gt4sd.algorithms.prediction.paccmann.implementation module¶
Implementation of the zero-shot classifier.
Summary¶
Classes:
Bimodal MCA (Multiscale Convolutional Attention) affinity prediction model.  | 
|
Base implementation of an MCAPredictor.  | 
Reference¶
- class MCAPredictor[source]¶
 Bases:
objectBase implementation of an MCAPredictor.
- predict_values()[source]¶
 Get prediction for algorithm sample method.
- Return type
 Any- Returns
 predicted values as list.
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.prediction.paccmann.implementation', '__doc__': 'Base implementation of an MCAPredictor.', 'predict': <function MCAPredictor.predict>, 'predict_values': <function MCAPredictor.predict_values>, '__dict__': <attribute '__dict__' of 'MCAPredictor' objects>, '__weakref__': <attribute '__weakref__' of 'MCAPredictor' objects>, '__annotations__': {}})¶
 
- __doc__ = 'Base implementation of an MCAPredictor.'¶
 
- __module__ = 'gt4sd.algorithms.prediction.paccmann.implementation'¶
 
- __weakref__¶
 list of weak references to the object (if defined)
- class BimodalMCAAffinityPredictor(resources_path, protein_targets, ligands, confidence, device=None)[source]¶
 Bases:
MCAPredictorBimodal MCA (Multiscale Convolutional Attention) affinity prediction model.
For details see: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00520 and https://iopscience.iop.org/article/10.1088/2632-2153/abe808.
- __init__(resources_path, protein_targets, ligands, confidence, device=None)[source]¶
 Initialize BimodalMCAAffinityPredictor.
- Parameters
 resources_path (
str) – path where to load model weights and cofiguration.protein_targets (
List[str]) – list of protein targets as AA sequences.ligands (
List[str]) – list of ligands in SMILES format.confidence (
bool) – whether the confidence for the prediction should be returned.device (
Union[device,str,None]) – device where the inference is running either as a dedicated class or a string. If not provided is inferred.
- predict_values()[source]¶
 Get prediction for algorithm sample method.
- Return type
 List[float]- Returns
 predicted values as list.
- __annotations__ = {}¶
 
- __doc__ = 'Bimodal MCA (Multiscale Convolutional Attention) affinity prediction model.\n\n For details see: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00520\n and https://iopscience.iop.org/article/10.1088/2632-2153/abe808.\n '¶
 
- __module__ = 'gt4sd.algorithms.prediction.paccmann.implementation'¶