Source code for gt4sd.algorithms.prediction.paccmann.implementation

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""Implementation of the zero-shot classifier."""

import json
import logging
import os
from typing import Any, List, Optional, Union

import torch
from paccmann_predictor.models import MODEL_FACTORY
from pytoda.proteins.protein_language import ProteinLanguage
from pytoda.smiles.smiles_language import SMILESLanguage
from pytoda.transforms import LeftPadding, ToTensor

from ....frameworks.torch import device_claim

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())


[docs]class MCAPredictor: """Base implementation of an MCAPredictor."""
[docs] def predict(self) -> Any: """Get prediction. Returns: predicted affinity """ raise NotImplementedError("No prediction implemented for base MCAPredictor")
[docs] def predict_values(self) -> Any: """Get prediction for algorithm sample method. Returns: predicted values as list. """ raise NotImplementedError( "No values prediction implemented for base MCAPredictor" )
[docs]class BimodalMCAAffinityPredictor(MCAPredictor): """Bimodal MCA (Multiscale Convolutional Attention) affinity prediction model. For details see: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00520 and https://iopscience.iop.org/article/10.1088/2632-2153/abe808. """
[docs] def __init__( self, resources_path: str, protein_targets: List[str], ligands: List[str], confidence: bool, device: Optional[Union[torch.device, str]] = None, ): """Initialize BimodalMCAAffinityPredictor. Args: resources_path: path where to load model weights and cofiguration. protein_targets: list of protein targets as AA sequences. ligands: list of ligands in SMILES format. confidence: whether the confidence for the prediction should be returned. device: device where the inference is running either as a dedicated class or a string. If not provided is inferred. """ self.device = device_claim(device) self.resources_path = resources_path self.protein_targets = protein_targets self.ligands = ligands self.confidence = confidence # setting affinity predictor parameters with open(os.path.join(resources_path, "mca_model_params.json")) as f: self.predictor_params = json.load(f) self.affinity_predictor = MODEL_FACTORY["bimodal_mca"](self.predictor_params) self.affinity_predictor.load( os.path.join(resources_path, "mca_weights.pt"), map_location=self.device, ) affinity_protein_language = ProteinLanguage.load( os.path.join(resources_path, "protein_language.pkl") ) affinity_smiles_language = SMILESLanguage.load( os.path.join(resources_path, "smiles_language.pkl") ) self.affinity_predictor._associate_language(affinity_smiles_language) self.affinity_predictor._associate_language(affinity_protein_language) self.affinity_predictor.eval() self.pad_smiles_predictor = LeftPadding( self.affinity_predictor.smiles_padding_length, self.affinity_predictor.smiles_language.padding_index, ) self.pad_protein_predictor = LeftPadding( self.affinity_predictor.protein_padding_length, self.affinity_predictor.protein_language.padding_index, ) self.to_tensor = ToTensor()
[docs] def predict(self) -> Any: """Get predicted affinity. Returns: predicted affinity. """ # prepare ligand representation ligand_tensor = torch.cat( [ torch.unsqueeze( self.to_tensor( self.pad_smiles_predictor( self.affinity_predictor.smiles_language.smiles_to_token_indexes( ligand_smiles ) ) ), 0, ) for ligand_smiles in self.ligands ], dim=0, ) # prepare target protein representation target_tensor = torch.cat( [ torch.unsqueeze( self.to_tensor( self.pad_protein_predictor( self.affinity_predictor.protein_language.sequence_to_token_indexes( protein_target ) ) ), 0, ) for protein_target in self.protein_targets ], dim=0, ) with torch.no_grad(): predictions, predictions_dict = self.affinity_predictor( ligand_tensor, target_tensor, confidence=self.confidence, ) return predictions, predictions_dict
[docs] def predict_values(self) -> List[float]: """Get prediction for algorithm sample method. Returns: predicted values as list. """ predictions, _ = self.predict() return list(predictions[:, 0])