gt4sd.algorithms.registry module¶
Collection of available methods.
Summary¶
Classes:
Collect all needed to run an application. |
|
Registry to collect "applications" and make them accessible. |
|
Attributes to uniquely describe an AlgorithmConfiguration. |
|
Dict that raises when reassigning an existing key. |
Reference¶
- class ConfigurationTuple(algorithm_type: str, domain: str, algorithm_name: str, algorithm_application: str)[source]¶
Bases:
NamedTuple
Attributes to uniquely describe an AlgorithmConfiguration.
- algorithm_type: str¶
Alias for field number 0
- domain: str¶
Alias for field number 1
- algorithm_name: str¶
Alias for field number 2
- algorithm_application: str¶
Alias for field number 3
- __annotations__ = {'algorithm_application': <class 'str'>, 'algorithm_name': <class 'str'>, 'algorithm_type': <class 'str'>, 'domain': <class 'str'>}¶
- __doc__ = 'Attributes to uniquely describe an AlgorithmConfiguration.'¶
- __getnewargs__()¶
Return self as a plain tuple. Used by copy and pickle.
- __match_args__ = ('algorithm_type', 'domain', 'algorithm_name', 'algorithm_application')¶
- __module__ = 'gt4sd.algorithms.registry'¶
- __orig_bases__ = (<function NamedTuple>,)¶
- __repr__()¶
Return a nicely formatted representation string
- __slots__ = ()¶
- _asdict()¶
Return a new dict which maps field names to their values.
- _field_defaults = {}¶
- _fields = ('algorithm_type', 'domain', 'algorithm_name', 'algorithm_application')¶
- classmethod _make(iterable)¶
Make a new ConfigurationTuple object from a sequence or iterable
- _replace(**kwds)¶
Return a new ConfigurationTuple object replacing specified fields with new values
- class AnnotationTuple(annotation, default_value)[source]¶
Bases:
NamedTuple
- annotation: type¶
Alias for field number 0
- default_value: Any¶
Alias for field number 1
- __annotations__ = {'annotation': <class 'type'>, 'default_value': typing.Any}¶
- __doc__ = 'AnnotationTuple(annotation, default_value)'¶
- __getnewargs__()¶
Return self as a plain tuple. Used by copy and pickle.
- __match_args__ = ('annotation', 'default_value')¶
- __module__ = 'gt4sd.algorithms.registry'¶
- __orig_bases__ = (<function NamedTuple>,)¶
- __repr__()¶
Return a nicely formatted representation string
- __slots__ = ()¶
- _asdict()¶
Return a new dict which maps field names to their values.
- _field_defaults = {}¶
- _fields = ('annotation', 'default_value')¶
- classmethod _make(iterable)¶
Make a new AnnotationTuple object from a sequence or iterable
- _replace(**kwds)¶
Return a new AnnotationTuple object replacing specified fields with new values
- class AlgorithmApplication(algorithm_class, configuration_class, parameters_dict=<factory>)[source]¶
Bases:
object
Collect all needed to run an application.
- algorithm_class: Type[GeneratorAlgorithm]¶
- configuration_class: Type[AlgorithmConfiguration]¶
- parameters_dict: Dict[str, AnnotationTuple]¶
- __annotations__ = {'algorithm_class': typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm], 'configuration_class': typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration], 'parameters_dict': typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple]}¶
- __dataclass_fields__ = {'algorithm_class': Field(name='algorithm_class',type=typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'configuration_class': Field(name='configuration_class',type=typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'parameters_dict': Field(name='parameters_dict',type=typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple],default=<dataclasses._MISSING_TYPE object>,default_factory=<class 'dict'>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.registry', '__annotations__': {'algorithm_class': typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm], 'configuration_class': typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration], 'parameters_dict': typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple]}, '__doc__': 'Collect all needed to run an application.', '__dict__': <attribute '__dict__' of 'AlgorithmApplication' objects>, '__weakref__': <attribute '__weakref__' of 'AlgorithmApplication' objects>, '__dataclass_params__': _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False), '__dataclass_fields__': {'algorithm_class': Field(name='algorithm_class',type=typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'configuration_class': Field(name='configuration_class',type=typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'parameters_dict': Field(name='parameters_dict',type=typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple],default=<dataclasses._MISSING_TYPE object>,default_factory=<class 'dict'>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}, '__init__': <function AlgorithmApplication.__init__>, '__repr__': <function AlgorithmApplication.__repr__>, '__eq__': <function AlgorithmApplication.__eq__>, '__hash__': None, '__match_args__': ('algorithm_class', 'configuration_class', 'parameters_dict')})¶
- __doc__ = 'Collect all needed to run an application.'¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(algorithm_class, configuration_class, parameters_dict=<factory>)¶
- __match_args__ = ('algorithm_class', 'configuration_class', 'parameters_dict')¶
- __module__ = 'gt4sd.algorithms.registry'¶
- __repr__()¶
Return repr(self).
- __weakref__¶
list of weak references to the object (if defined)
- class RegistryDict[source]¶
Bases:
Dict
[ConfigurationTuple
,AlgorithmApplication
]Dict that raises when reassigning an existing key.
- __annotations__ = {}¶
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.registry', '__doc__': 'Dict that raises when reassigning an existing key.', '__setitem__': <function RegistryDict.__setitem__>, '__orig_bases__': (typing.Dict[gt4sd.algorithms.registry.ConfigurationTuple, gt4sd.algorithms.registry.AlgorithmApplication],), '__dict__': <attribute '__dict__' of 'RegistryDict' objects>, '__weakref__': <attribute '__weakref__' of 'RegistryDict' objects>, '__parameters__': (), '__annotations__': {}})¶
- __doc__ = 'Dict that raises when reassigning an existing key.'¶
- __module__ = 'gt4sd.algorithms.registry'¶
- __orig_bases__ = (typing.Dict[gt4sd.algorithms.registry.ConfigurationTuple, gt4sd.algorithms.registry.AlgorithmApplication],)¶
- __parameters__ = ()¶
- __weakref__¶
list of weak references to the object (if defined)
- class ApplicationsRegistry[source]¶
Bases:
object
Registry to collect “applications” and make them accessible.
An application denotes the combination of an
AlgorithmConfiguration
and aGeneratorAlgorithm
.- applications: RegistryDict = {ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphMCTSGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphMCTSGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMHCGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMHCGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMPPOGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMPPOGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MolGX', algorithm_application='MolGXQM9Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGX'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGXQM9Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='AaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.AaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='OrganGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.OrganGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='VaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.VaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLOmicBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLOmicBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLProteinBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLProteinBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerMolecules'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerMolecules'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerProteins'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerProteins'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Reinvent', algorithm_application='ReinventGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.Reinvent'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.ReinventGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Template', algorithm_application='TemplateGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.template.core.Template'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.template.core.TemplateGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='nlp', algorithm_name='KeywordBERTGenerationAlgorithm', algorithm_application='KeyBERTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeywordBERTGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeyBERTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='AdvancedManufacturing', algorithm_application='CatalystGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.AdvancedManufacturing'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.CatalystGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='PaccMannGP', algorithm_application='PaccMannGPGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGP'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGPGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='MoLeR', algorithm_application='MoLeRDefaultGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeR'>, configuration_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeRDefaultGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PaccMannVAE', algorithm_application='PaccMannVAEGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAE'>, configuration_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAEGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PolymerBlocks', algorithm_application='PolymerBlocksGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocks'>, configuration_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocksGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGCPN'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGCPN'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGraphAF'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGraphAF'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceCTRLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceCTRLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceGPT2Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGPT2Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceOpenAIGPTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceOpenAIGPTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceSeq2SeqGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceSeq2SeqGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceTransfoXLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceTransfoXLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLNetGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLNetGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTAlgorithmConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTAlgorithmConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTCoherenceChecker'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTCoherenceChecker'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTEditor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTEditor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDIMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDIMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDPMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDPMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DiffusersConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='GeoDiffGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.GeoDiffGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMTextToImageGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMTextToImageGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='ScoreSdeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.ScoreSdeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='StableDiffusionGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.StableDiffusionGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='materials', algorithm_name='PaccMann', algorithm_application='AffinityPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.paccmann.core.PaccMann'>, configuration_class=<class 'gt4sd.algorithms.prediction.paccmann.core.AffinityPredictor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='nlp', algorithm_name='TopicsZeroShot', algorithm_application='TopicsPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsZeroShot'>, configuration_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsPredictor'>, parameters_dict={})}¶
- classmethod register_algorithm_application(algorithm_class, as_algorithm_application=None)[source]¶
Complete and register a configuration via decoration.
- Parameters
algorithm_class (
Type
[GeneratorAlgorithm
]) – The algorithm that uses the configuration.as_algorithm_application (
Optional
[str
,None
]) – Optional application name to use instead of the configurations class name.
- Return type
Callable
[[Type
[AlgorithmConfiguration
]],Type
[AlgorithmConfiguration
]]- Returns
A function to complete the configuration class’ attributes to reflect the matching GeneratorAlgorithm and application. The final class is registered and returned.
Example
as decorator:
from gt4sd.algorithms.registry import ApplicationsRegistry @ApplicationsRegistry.register_algorithm_application(SomeAlgorithm) class SomeApplication(AlgorithmConfiguration): algorithm_type: ClassVar[str] = 'conditional_generation' domain: ClassVar[str] = 'materials' algorithm_version: str = 'v0' some_more_serializable_arguments_with_defaults: int = 42
Example
directly, here for an additional algorithm application with the same algorithm:
AnotherApplication = ApplicationsRegistry.register_algorithm_application( SomeAlgorithm, 'AnotherApplication' )(SomeApplication)
- static configuration_class_as_tuple(algorithm_configuration_class)[source]¶
Get a hashable identifier per application.
- Return type
- classmethod get_application(algorithm_type, domain, algorithm_name, algorithm_application)[source]¶
- Return type
- classmethod get_matching_configuration_defaults(algorithm_type, domain, algorithm_name, algorithm_application)[source]¶
- Return type
Dict
[str
,AnnotationTuple
]
- classmethod get_matching_configuration_schema(algorithm_type, domain, algorithm_name, algorithm_application)[source]¶
- Return type
Dict
[str
,Any
]
- classmethod get_configuration_instance(algorithm_type, domain, algorithm_name, algorithm_application, *args, **kwargs)[source]¶
Create an instance of the matching AlgorithmConfiguration from the ApplicationsRegistry.
- Parameters
algorithm_type (
str
) – general type of generative algorithm.domain (
str
) – general application domain. Hints at input/output types.algorithm_name (
str
) – name of the algorithm to use with this configuration.algorithm_application (
str
) – unique name for the application that is the use of this configuration together with a specific algorithm.algorithm_version – to differentiate between different versions of an application.
*args – additional positional arguments passed to the configuration.
**kwargs – additional keyword arguments passed to the configuration.
- Return type
- Returns
an instance of the configuration.
- classmethod get_application_instance(algorithm_type, domain, algorithm_name, algorithm_application, target=None, **kwargs)[source]¶
Instantiate an algorithm via a matching application from the ApplicationsRegistry.
Additional arguments are passed to the configuration and override any arguments in the ApplicationsRegistry.
- Parameters
algorithm_type (
str
) – general type of generative algorithm.domain (
str
) – general application domain. Hints at input/output types.algorithm_name (
str
) – name of the algorithm to use with this configuration.algorithm_application (
str
) – unique name for the application that is the use of this configuration together with a specific algorithm.algorithm_version – to differentiate between different versions of an application.
target (
Optional
[Any
,None
]) – optional context or condition for the generation.**kwargs – additional keyword arguments passed to the configuration.
- Return type
- Returns
an instance of a generative algorithm ready to sample from.
- __annotations__ = {'applications': <class 'gt4sd.algorithms.registry.RegistryDict'>}¶
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.registry', '__annotations__': {'applications': <class 'gt4sd.algorithms.registry.RegistryDict'>}, '__doc__': 'Registry to collect "applications" and make them accessible.\n\n An application denotes the combination of an\n :class:`AlgorithmConfiguration<gt4sd.algorithms.core.AlgorithmConfiguration>` and a\n :class:`GeneratorAlgorithm<gt4sd.algorithms.core.GeneratorAlgorithm>`.\n ', 'applications': {ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphMCTSGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphMCTSGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMHCGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMHCGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMPPOGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMPPOGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='AaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.AaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='VaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.VaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='OrganGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.OrganGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='nlp', algorithm_name='KeywordBERTGenerationAlgorithm', algorithm_application='KeyBERTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeywordBERTGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeyBERTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MolGX', algorithm_application='MolGXQM9Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGX'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGXQM9Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLProteinBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLProteinBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLOmicBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLOmicBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerMolecules'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerMolecules'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerProteins'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerProteins'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Reinvent', algorithm_application='ReinventGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.Reinvent'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.ReinventGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Template', algorithm_application='TemplateGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.template.core.Template'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.template.core.TemplateGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='AdvancedManufacturing', algorithm_application='CatalystGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.AdvancedManufacturing'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.CatalystGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='PaccMannGP', algorithm_application='PaccMannGPGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGP'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGPGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DiffusersConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDPMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDPMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDIMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDIMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='ScoreSdeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.ScoreSdeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMTextToImageGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMTextToImageGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='StableDiffusionGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.StableDiffusionGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='GeoDiffGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.GeoDiffGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceCTRLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceCTRLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceGPT2Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGPT2Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceOpenAIGPTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceOpenAIGPTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLNetGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLNetGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceTransfoXLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceTransfoXLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceSeq2SeqGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceSeq2SeqGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='MoLeR', algorithm_application='MoLeRDefaultGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeR'>, configuration_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeRDefaultGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTAlgorithmConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTAlgorithmConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTEditor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTEditor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTCoherenceChecker'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTCoherenceChecker'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PolymerBlocks', algorithm_application='PolymerBlocksGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocks'>, configuration_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocksGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGCPN'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGCPN'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGraphAF'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGraphAF'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='materials', algorithm_name='PaccMann', algorithm_application='AffinityPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.paccmann.core.PaccMann'>, configuration_class=<class 'gt4sd.algorithms.prediction.paccmann.core.AffinityPredictor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='nlp', algorithm_name='TopicsZeroShot', algorithm_application='TopicsPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsZeroShot'>, configuration_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsPredictor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PaccMannVAE', algorithm_application='PaccMannVAEGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAE'>, configuration_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAEGenerator'>, parameters_dict={})}, '_register_application': <classmethod(<function ApplicationsRegistry._register_application>)>, 'register_algorithm_application': <classmethod(<function ApplicationsRegistry.register_algorithm_application>)>, 'configuration_class_as_tuple': <staticmethod(<function ApplicationsRegistry.configuration_class_as_tuple>)>, 'get_application': <classmethod(<function ApplicationsRegistry.get_application>)>, 'get_matching_configuration_defaults': <classmethod(<function ApplicationsRegistry.get_matching_configuration_defaults>)>, 'get_matching_configuration_schema': <classmethod(<function ApplicationsRegistry.get_matching_configuration_schema>)>, 'get_configuration_instance': <classmethod(<function ApplicationsRegistry.get_configuration_instance>)>, 'get_application_instance': <classmethod(<function ApplicationsRegistry.get_application_instance>)>, 'list_available': <classmethod(<function ApplicationsRegistry.list_available>)>, '__dict__': <attribute '__dict__' of 'ApplicationsRegistry' objects>, '__weakref__': <attribute '__weakref__' of 'ApplicationsRegistry' objects>})¶
- __doc__ = 'Registry to collect "applications" and make them accessible.\n\n An application denotes the combination of an\n :class:`AlgorithmConfiguration<gt4sd.algorithms.core.AlgorithmConfiguration>` and a\n :class:`GeneratorAlgorithm<gt4sd.algorithms.core.GeneratorAlgorithm>`.\n '¶
- __module__ = 'gt4sd.algorithms.registry'¶
- __weakref__¶
list of weak references to the object (if defined)