gt4sd.algorithms.registry module

Collection of available methods.

Summary

Classes:

AlgorithmApplication

Collect all needed to run an application.

AnnotationTuple

ApplicationsRegistry

Registry to collect "applications" and make them accessible.

ConfigurationTuple

Attributes to uniquely describe an AlgorithmConfiguration.

RegistryDict

Dict that raises when reassigning an existing key.

Reference

class ConfigurationTuple(algorithm_type: str, domain: str, algorithm_name: str, algorithm_application: str)[source]

Bases: NamedTuple

Attributes to uniquely describe an AlgorithmConfiguration.

algorithm_type: str

Alias for field number 0

domain: str

Alias for field number 1

algorithm_name: str

Alias for field number 2

algorithm_application: str

Alias for field number 3

__annotations__ = {'algorithm_application': <class 'str'>, 'algorithm_name': <class 'str'>, 'algorithm_type': <class 'str'>, 'domain': <class 'str'>}
__doc__ = 'Attributes to uniquely describe an AlgorithmConfiguration.'
__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__match_args__ = ('algorithm_type', 'domain', 'algorithm_name', 'algorithm_application')
__module__ = 'gt4sd.algorithms.registry'
__orig_bases__ = (<function NamedTuple>,)
__repr__()

Return a nicely formatted representation string

__slots__ = ()
_asdict()

Return a new dict which maps field names to their values.

_field_defaults = {}
_fields = ('algorithm_type', 'domain', 'algorithm_name', 'algorithm_application')
classmethod _make(iterable)

Make a new ConfigurationTuple object from a sequence or iterable

_replace(**kwds)

Return a new ConfigurationTuple object replacing specified fields with new values

class AnnotationTuple(annotation, default_value)[source]

Bases: NamedTuple

annotation: type

Alias for field number 0

default_value: Any

Alias for field number 1

__annotations__ = {'annotation': <class 'type'>, 'default_value': typing.Any}
__doc__ = 'AnnotationTuple(annotation, default_value)'
__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__match_args__ = ('annotation', 'default_value')
__module__ = 'gt4sd.algorithms.registry'
__orig_bases__ = (<function NamedTuple>,)
__repr__()

Return a nicely formatted representation string

__slots__ = ()
_asdict()

Return a new dict which maps field names to their values.

_field_defaults = {}
_fields = ('annotation', 'default_value')
classmethod _make(iterable)

Make a new AnnotationTuple object from a sequence or iterable

_replace(**kwds)

Return a new AnnotationTuple object replacing specified fields with new values

class AlgorithmApplication(algorithm_class, configuration_class, parameters_dict=<factory>)[source]

Bases: object

Collect all needed to run an application.

algorithm_class: Type[GeneratorAlgorithm]
configuration_class: Type[AlgorithmConfiguration]
parameters_dict: Dict[str, AnnotationTuple]
__annotations__ = {'algorithm_class': typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm], 'configuration_class': typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration], 'parameters_dict': typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple]}
__dataclass_fields__ = {'algorithm_class': Field(name='algorithm_class',type=typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'configuration_class': Field(name='configuration_class',type=typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'parameters_dict': Field(name='parameters_dict',type=typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple],default=<dataclasses._MISSING_TYPE object>,default_factory=<class 'dict'>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}
__dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)
__dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.registry', '__annotations__': {'algorithm_class': typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm], 'configuration_class': typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration], 'parameters_dict': typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple]}, '__doc__': 'Collect all needed to run an application.', '__dict__': <attribute '__dict__' of 'AlgorithmApplication' objects>, '__weakref__': <attribute '__weakref__' of 'AlgorithmApplication' objects>, '__dataclass_params__': _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False), '__dataclass_fields__': {'algorithm_class': Field(name='algorithm_class',type=typing.Type[gt4sd.algorithms.core.GeneratorAlgorithm],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'configuration_class': Field(name='configuration_class',type=typing.Type[gt4sd.algorithms.core.AlgorithmConfiguration],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'parameters_dict': Field(name='parameters_dict',type=typing.Dict[str, gt4sd.algorithms.registry.AnnotationTuple],default=<dataclasses._MISSING_TYPE object>,default_factory=<class 'dict'>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}, '__init__': <function AlgorithmApplication.__init__>, '__repr__': <function AlgorithmApplication.__repr__>, '__eq__': <function AlgorithmApplication.__eq__>, '__hash__': None, '__match_args__': ('algorithm_class', 'configuration_class', 'parameters_dict')})
__doc__ = 'Collect all needed to run an application.'
__eq__(other)

Return self==value.

__hash__ = None
__init__(algorithm_class, configuration_class, parameters_dict=<factory>)
__match_args__ = ('algorithm_class', 'configuration_class', 'parameters_dict')
__module__ = 'gt4sd.algorithms.registry'
__repr__()

Return repr(self).

__weakref__

list of weak references to the object (if defined)

class RegistryDict[source]

Bases: Dict[ConfigurationTuple, AlgorithmApplication]

Dict that raises when reassigning an existing key.

__setitem__(key, value)[source]

Set self[key] to value.

__annotations__ = {}
__dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.registry', '__doc__': 'Dict that raises when reassigning an existing key.', '__setitem__': <function RegistryDict.__setitem__>, '__orig_bases__': (typing.Dict[gt4sd.algorithms.registry.ConfigurationTuple, gt4sd.algorithms.registry.AlgorithmApplication],), '__dict__': <attribute '__dict__' of 'RegistryDict' objects>, '__weakref__': <attribute '__weakref__' of 'RegistryDict' objects>, '__parameters__': (), '__annotations__': {}})
__doc__ = 'Dict that raises when reassigning an existing key.'
__module__ = 'gt4sd.algorithms.registry'
__orig_bases__ = (typing.Dict[gt4sd.algorithms.registry.ConfigurationTuple, gt4sd.algorithms.registry.AlgorithmApplication],)
__parameters__ = ()
__weakref__

list of weak references to the object (if defined)

class ApplicationsRegistry[source]

Bases: object

Registry to collect “applications” and make them accessible.

An application denotes the combination of an AlgorithmConfiguration and a GeneratorAlgorithm.

applications: RegistryDict = {ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphMCTSGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphMCTSGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMHCGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMHCGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMPPOGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMPPOGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MolGX', algorithm_application='MolGXQM9Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGX'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGXQM9Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='AaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.AaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='OrganGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.OrganGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='VaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.VaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLOmicBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLOmicBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLProteinBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLProteinBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerMolecules'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerMolecules'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerProteins'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerProteins'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Reinvent', algorithm_application='ReinventGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.Reinvent'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.ReinventGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Template', algorithm_application='TemplateGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.template.core.Template'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.template.core.TemplateGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='nlp', algorithm_name='KeywordBERTGenerationAlgorithm', algorithm_application='KeyBERTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeywordBERTGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeyBERTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='AdvancedManufacturing', algorithm_application='CatalystGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.AdvancedManufacturing'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.CatalystGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='PaccMannGP', algorithm_application='PaccMannGPGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGP'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGPGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='MoLeR', algorithm_application='MoLeRDefaultGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeR'>, configuration_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeRDefaultGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PaccMannVAE', algorithm_application='PaccMannVAEGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAE'>, configuration_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAEGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PolymerBlocks', algorithm_application='PolymerBlocksGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocks'>, configuration_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocksGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGCPN'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGCPN'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGraphAF'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGraphAF'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceCTRLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceCTRLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceGPT2Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGPT2Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceOpenAIGPTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceOpenAIGPTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceSeq2SeqGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceSeq2SeqGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceTransfoXLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceTransfoXLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLNetGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLNetGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTAlgorithmConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTAlgorithmConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTCoherenceChecker'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTCoherenceChecker'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTEditor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTEditor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDIMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDIMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDPMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDPMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DiffusersConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='GeoDiffGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.GeoDiffGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMTextToImageGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMTextToImageGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='ScoreSdeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.ScoreSdeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='StableDiffusionGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.StableDiffusionGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='materials', algorithm_name='PaccMann', algorithm_application='AffinityPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.paccmann.core.PaccMann'>, configuration_class=<class 'gt4sd.algorithms.prediction.paccmann.core.AffinityPredictor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='nlp', algorithm_name='TopicsZeroShot', algorithm_application='TopicsPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsZeroShot'>, configuration_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsPredictor'>, parameters_dict={})}
classmethod _register_application(algorithm_class, algorithm_configuration_class)[source]
classmethod register_algorithm_application(algorithm_class, as_algorithm_application=None)[source]

Complete and register a configuration via decoration.

Parameters
  • algorithm_class (Type[GeneratorAlgorithm]) – The algorithm that uses the configuration.

  • as_algorithm_application (Optional[str, None]) – Optional application name to use instead of the configurations class name.

Return type

Callable[[Type[AlgorithmConfiguration]], Type[AlgorithmConfiguration]]

Returns

A function to complete the configuration class’ attributes to reflect the matching GeneratorAlgorithm and application. The final class is registered and returned.

Example

as decorator:

from gt4sd.algorithms.registry import ApplicationsRegistry


@ApplicationsRegistry.register_algorithm_application(SomeAlgorithm)
class SomeApplication(AlgorithmConfiguration):
    algorithm_type: ClassVar[str] = 'conditional_generation'
    domain: ClassVar[str] = 'materials'
    algorithm_version: str = 'v0'

    some_more_serializable_arguments_with_defaults: int = 42

Example

directly, here for an additional algorithm application with the same algorithm:

AnotherApplication = ApplicationsRegistry.register_algorithm_application(
    SomeAlgorithm, 'AnotherApplication'
)(SomeApplication)
static configuration_class_as_tuple(algorithm_configuration_class)[source]

Get a hashable identifier per application.

Return type

ConfigurationTuple

classmethod get_application(algorithm_type, domain, algorithm_name, algorithm_application)[source]
Return type

AlgorithmApplication

classmethod get_matching_configuration_defaults(algorithm_type, domain, algorithm_name, algorithm_application)[source]
Return type

Dict[str, AnnotationTuple]

classmethod get_matching_configuration_schema(algorithm_type, domain, algorithm_name, algorithm_application)[source]
Return type

Dict[str, Any]

classmethod get_configuration_instance(algorithm_type, domain, algorithm_name, algorithm_application, *args, **kwargs)[source]

Create an instance of the matching AlgorithmConfiguration from the ApplicationsRegistry.

Parameters
  • algorithm_type (str) – general type of generative algorithm.

  • domain (str) – general application domain. Hints at input/output types.

  • algorithm_name (str) – name of the algorithm to use with this configuration.

  • algorithm_application (str) – unique name for the application that is the use of this configuration together with a specific algorithm.

  • algorithm_version – to differentiate between different versions of an application.

  • *args – additional positional arguments passed to the configuration.

  • **kwargs – additional keyword arguments passed to the configuration.

Return type

AlgorithmConfiguration

Returns

an instance of the configuration.

classmethod get_application_instance(algorithm_type, domain, algorithm_name, algorithm_application, target=None, **kwargs)[source]

Instantiate an algorithm via a matching application from the ApplicationsRegistry.

Additional arguments are passed to the configuration and override any arguments in the ApplicationsRegistry.

Parameters
  • algorithm_type (str) – general type of generative algorithm.

  • domain (str) – general application domain. Hints at input/output types.

  • algorithm_name (str) – name of the algorithm to use with this configuration.

  • algorithm_application (str) – unique name for the application that is the use of this configuration together with a specific algorithm.

  • algorithm_version – to differentiate between different versions of an application.

  • target (Optional[Any, None]) – optional context or condition for the generation.

  • **kwargs – additional keyword arguments passed to the configuration.

Return type

GeneratorAlgorithm

Returns

an instance of a generative algorithm ready to sample from.

classmethod list_available()[source]
Return type

List[Dict[str, str]]

__annotations__ = {'applications': <class 'gt4sd.algorithms.registry.RegistryDict'>}
__dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.registry', '__annotations__': {'applications': <class 'gt4sd.algorithms.registry.RegistryDict'>}, '__doc__': 'Registry to collect "applications" and make them accessible.\n\n    An application denotes the combination of an\n    :class:`AlgorithmConfiguration<gt4sd.algorithms.core.AlgorithmConfiguration>` and a\n    :class:`GeneratorAlgorithm<gt4sd.algorithms.core.GeneratorAlgorithm>`.\n    ', 'applications': {ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphGAGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphGAGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='GraphMCTSGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GraphMCTSGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMHCGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMHCGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='GuacaMolGenerator', algorithm_application='SMILESLSTMPPOGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.GuacaMolGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.SMILESLSTMPPOGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='AaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.AaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='VaeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.VaeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MosesGenerator', algorithm_application='OrganGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.MosesGenerator'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.guacamol.core.OrganGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='nlp', algorithm_name='KeywordBERTGenerationAlgorithm', algorithm_application='KeyBERTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeywordBERTGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.key_bert.core.KeyBERTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='MolGX', algorithm_application='MolGXQM9Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGX'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.molgx.core.MolGXQM9Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLProteinBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLProteinBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='PaccMannRL', algorithm_application='PaccMannRLOmicBasedGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRL'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.paccmann_rl.core.PaccMannRLOmicBasedGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerMolecules'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerMolecules'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='RegressionTransformer', algorithm_application='RegressionTransformerProteins'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformer'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.regression_transformer.core.RegressionTransformerProteins'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Reinvent', algorithm_application='ReinventGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.Reinvent'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.reinvent.core.ReinventGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='conditional_generation', domain='materials', algorithm_name='Template', algorithm_application='TemplateGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.conditional_generation.template.core.Template'>, configuration_class=<class 'gt4sd.algorithms.conditional_generation.template.core.TemplateGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='AdvancedManufacturing', algorithm_application='CatalystGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.AdvancedManufacturing'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.core.CatalystGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='controlled_sampling', domain='materials', algorithm_name='PaccMannGP', algorithm_application='PaccMannGPGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGP'>, configuration_class=<class 'gt4sd.algorithms.controlled_sampling.paccmann_gp.core.PaccMannGPGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DiffusersConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDPMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDPMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='DDIMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.DDIMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='ScoreSdeGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.ScoreSdeGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='LDMTextToImageGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.LDMTextToImageGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='StableDiffusionGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.StableDiffusionGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='vision', algorithm_name='DiffusersGenerationAlgorithm', algorithm_application='GeoDiffGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.diffusion.core.DiffusersGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.diffusion.core.GeoDiffGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLMGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLMGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceCTRLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceCTRLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceGPT2Generator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGPT2Generator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceOpenAIGPTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceOpenAIGPTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceXLNetGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceXLNetGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceTransfoXLGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceTransfoXLGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='HuggingFaceGenerationAlgorithm', algorithm_application='HuggingFaceSeq2SeqGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceGenerationAlgorithm'>, configuration_class=<class 'gt4sd.algorithms.generation.hugging_face.core.HuggingFaceSeq2SeqGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='MoLeR', algorithm_application='MoLeRDefaultGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeR'>, configuration_class=<class 'gt4sd.algorithms.generation.moler.core.MoLeRDefaultGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTAlgorithmConfiguration'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTAlgorithmConfiguration'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTEditor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTEditor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='nlp', algorithm_name='PGT', algorithm_application='PGTCoherenceChecker'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.pgt.core.PGT'>, configuration_class=<class 'gt4sd.algorithms.generation.pgt.core.PGTCoherenceChecker'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PolymerBlocks', algorithm_application='PolymerBlocksGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocks'>, configuration_class=<class 'gt4sd.algorithms.generation.polymer_blocks.core.PolymerBlocksGenerator'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGCPN'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGCPN'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='TorchDrugGenerator', algorithm_application='TorchDrugGraphAF'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGenerator'>, configuration_class=<class 'gt4sd.algorithms.generation.torchdrug.core.TorchDrugGraphAF'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='materials', algorithm_name='PaccMann', algorithm_application='AffinityPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.paccmann.core.PaccMann'>, configuration_class=<class 'gt4sd.algorithms.prediction.paccmann.core.AffinityPredictor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='prediction', domain='nlp', algorithm_name='TopicsZeroShot', algorithm_application='TopicsPredictor'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsZeroShot'>, configuration_class=<class 'gt4sd.algorithms.prediction.topics_zero_shot.core.TopicsPredictor'>, parameters_dict={}), ConfigurationTuple(algorithm_type='generation', domain='materials', algorithm_name='PaccMannVAE', algorithm_application='PaccMannVAEGenerator'): AlgorithmApplication(algorithm_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAE'>, configuration_class=<class 'gt4sd.algorithms.generation.paccmann_vae.core.PaccMannVAEGenerator'>, parameters_dict={})}, '_register_application': <classmethod(<function ApplicationsRegistry._register_application>)>, 'register_algorithm_application': <classmethod(<function ApplicationsRegistry.register_algorithm_application>)>, 'configuration_class_as_tuple': <staticmethod(<function ApplicationsRegistry.configuration_class_as_tuple>)>, 'get_application': <classmethod(<function ApplicationsRegistry.get_application>)>, 'get_matching_configuration_defaults': <classmethod(<function ApplicationsRegistry.get_matching_configuration_defaults>)>, 'get_matching_configuration_schema': <classmethod(<function ApplicationsRegistry.get_matching_configuration_schema>)>, 'get_configuration_instance': <classmethod(<function ApplicationsRegistry.get_configuration_instance>)>, 'get_application_instance': <classmethod(<function ApplicationsRegistry.get_application_instance>)>, 'list_available': <classmethod(<function ApplicationsRegistry.list_available>)>, '__dict__': <attribute '__dict__' of 'ApplicationsRegistry' objects>, '__weakref__': <attribute '__weakref__' of 'ApplicationsRegistry' objects>})
__doc__ = 'Registry to collect "applications" and make them accessible.\n\n    An application denotes the combination of an\n    :class:`AlgorithmConfiguration<gt4sd.algorithms.core.AlgorithmConfiguration>` and a\n    :class:`GeneratorAlgorithm<gt4sd.algorithms.core.GeneratorAlgorithm>`.\n    '
__module__ = 'gt4sd.algorithms.registry'
__weakref__

list of weak references to the object (if defined)