gt4sd.training_pipelines.torchdrug.dataset module

Summary

Classes:

TorchDrugDataset

A generic TorchDrug dataset class that can be fed with custom data

Reference

class TorchDrugDataset(file_path, target_fields, smiles_field='smiles', verbose=1, lazy=False, transform=None, node_feature='default', edge_feature='default', graph_feature=None, with_hydrogen=False, kekulize=False)[source]

Bases: MoleculeDataset

A generic TorchDrug dataset class that can be fed with custom data

__init__(file_path, target_fields, smiles_field='smiles', verbose=1, lazy=False, transform=None, node_feature='default', edge_feature='default', graph_feature=None, with_hydrogen=False, kekulize=False)[source]

Constructor of TorchDrugDataset.

Parameters
  • file_path (str) – The path to the .csv file containing the data.

  • target_fields (str) – The columns containing the property to be optimized.

  • smiles_field (str) – The column name containing the SMILES. Defaults to ‘smiles’.

  • verbose (int) – output verbose level. Defaults to 1.

  • lazy (Optional[bool, None]) – If yes, molecules are processed in the dataloader. This is faster for setup, but slower at training time. Defaults to False.

  • transform (Optional[Callable, None]) – Optional data transformation function. Defaults to None.

  • node_feature (Union[str, List[str], None]) – Node features to extract. Defaults to ‘default’.

  • edge_feature (Union[str, List[str], None]) – Edge features to extract. Defaults to ‘default’.

  • graph_feature (Union[str, List[str], None]) – Graph features to extract. Defaults to None.

  • with_hydrogen (Optional[bool, None]) – Whether hydrogens are stored in molecular graph. Defaults to False.

  • kekulize (Optional[bool, None]) – Whether aromatic bonds are converted to single/double bonds. Defaults to False.

__annotations__ = {}
__doc__ = 'A generic TorchDrug dataset class that can be fed with custom data'
__module__ = 'gt4sd.training_pipelines.torchdrug.dataset'
__parameters__ = ()
config_dict()
classmethod load_config_dict(config)