gt4sd Logo
  • Examples on how to use the GT4SD algorithms
  • Examples on how to add an algorithm to GT4SD
  • Examples on how to upload models on a self-hosted minio service using GT4SD
  • Example on how to use GFlowNet for a generic task using GT4SD
  • API of the gt4sd package
    • gt4sd.configuration module
    • gt4sd.conftest module
    • gt4sd.exceptions module
    • gt4sd.s3 module
    • gt4sd.algorithms package
    • gt4sd.cli package
    • gt4sd.domains package
    • gt4sd.extras package
    • gt4sd.frameworks package
    • gt4sd.properties package
    • gt4sd.tests package
    • gt4sd.training_pipelines package
      • gt4sd.training_pipelines.core module
      • gt4sd.training_pipelines.cgcnn package
      • gt4sd.training_pipelines.crystals_crf package
      • gt4sd.training_pipelines.diffusion package
      • gt4sd.training_pipelines.guacamol_baselines package
      • gt4sd.training_pipelines.moses package
      • gt4sd.training_pipelines.paccmann package
      • gt4sd.training_pipelines.pytorch_lightning package
        • gt4sd.training_pipelines.pytorch_lightning.gflownet package
        • gt4sd.training_pipelines.pytorch_lightning.granular package
        • gt4sd.training_pipelines.pytorch_lightning.molformer package
      • gt4sd.training_pipelines.regression_transformer package
      • gt4sd.training_pipelines.tests package
      • gt4sd.training_pipelines.torchdrug package
      • Summary
      • Reference
gt4sd
  • »
  • gt4sd package »
  • gt4sd.training_pipelines package »
  • gt4sd.training_pipelines.pytorch_lightning package
  • View page source

gt4sd.training_pipelines.pytorch_lightning packageΒΆ

Subpackages:

  • gt4sd.training_pipelines.pytorch_lightning.gflownet package
  • gt4sd.training_pipelines.pytorch_lightning.granular package
  • gt4sd.training_pipelines.pytorch_lightning.molformer package
Next Previous

© Copyright GT4SD team 2022.

Built with Sphinx using a theme provided by Read the Docs.