gt4sd.training_pipelines.pytorch_lightning.molformer.core module

Molformer training utilities.

Summary

Classes:

MolformerDataArguments

Data arguments related to Molformer trainer.

MolformerModelArguments

Model arguments related to Molformer trainer.

MolformerSavingArguments

Saving arguments related to Molformer trainer.

MolformerTrainingArguments

Training arguments related to Molformer trainer.

MolformerTrainingPipeline

Molformer training pipelines for crystals.

Reference

class MolformerTrainingPipeline(**kwargs)[source]

Bases: PyTorchLightningTrainingPipeline

Molformer training pipelines for crystals.

__init__(**kwargs)[source]
get_data_and_model_modules(model_args, dataset_args, **kwargs)[source]

Get data and model modules for training.

Parameters
  • model_args (Dict[str, Union[float, str, int]]) – model arguments passed to the configuration.

  • dataset_args (Dict[str, Union[float, str, int]]) – dataset arguments passed to the configuration.

Return type

Tuple[LightningDataModule, LightningModule]

Returns

the data and model modules.

get_pretraining_modules(model_args, dataset_args)[source]

Get data and model modules for pretraing.

Parameters
  • model_args (Dict[str, Union[float, str, int]]) – model arguments passed to the configuration.

  • dataset_args (Dict[str, Union[float, str, int]]) – dataset arguments passed to the configuration.

Return type

Tuple[LightningDataModule, LightningModule]

Returns

the data and model modules.

get_classification_modules(model_args, dataset_args)[source]

Get data and model modules for pretraing.

Parameters
  • model_args (Dict[str, Union[float, str, int]]) – model arguments passed to the configuration.

  • dataset_args (Dict[str, Union[float, str, int]]) – dataset arguments passed to the configuration.

Return type

Tuple[LightningDataModule, LightningModule]

Returns

the data and model modules.

get_multitask_classification_modules(model_args, dataset_args)[source]

Get data and model modules for pretraing.

Parameters
  • model_args (Dict[str, Union[float, str, int]]) – model arguments passed to the configuration.

  • dataset_args (Dict[str, Union[float, str, int]]) – dataset arguments passed to the configuration.

Return type

Tuple[LightningDataModule, LightningModule]

Returns

the data and model modules.

get_regression_modules(model_args, dataset_args)[source]

Get data and model modules for pretraing.

Parameters
  • model_args (Dict[str, Union[float, str, int]]) – model arguments passed to the configuration.

  • dataset_args (Dict[str, Union[float, str, int]]) – dataset arguments passed to the configuration.

Return type

Tuple[LightningDataModule, LightningModule]

Returns

the data and model modules.

__annotations__ = {}
__doc__ = 'Molformer training pipelines for crystals.'
__module__ = 'gt4sd.training_pipelines.pytorch_lightning.molformer.core'
class MolformerDataArguments(batch_size=512, data_path='', max_len=100, train_load=None, num_workers=1, dataset_name='sol', measure_name='measure', data_root='my_data_root', train_dataset_length=None, eval_dataset_length=None, aug=False, measure_names=<factory>)[source]

Bases: TrainingPipelineArguments

Data arguments related to Molformer trainer.

__name__ = 'MolformerDataArguments'
batch_size: int = 512
data_path: str = ''
max_len: int = 100
train_load: Optional[str] = None
num_workers: Optional[int] = 1
dataset_name: str = 'sol'
measure_name: str = 'measure'
data_root: str = 'my_data_root'
train_dataset_length: Optional[int] = None
eval_dataset_length: Optional[int] = None
aug: bool = False
measure_names: List[str]
__annotations__ = {'aug': <class 'bool'>, 'batch_size': <class 'int'>, 'data_path': <class 'str'>, 'data_root': <class 'str'>, 'dataset_name': <class 'str'>, 'eval_dataset_length': typing.Optional[int], 'max_len': <class 'int'>, 'measure_name': <class 'str'>, 'measure_names': typing.List[str], 'num_workers': typing.Optional[int], 'train_dataset_length': typing.Optional[int], 'train_load': typing.Optional[str]}
__dataclass_fields__ = {'aug': Field(name='aug',type=<class 'bool'>,default=False,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'aug.'}),kw_only=False,_field_type=_FIELD), 'batch_size': Field(name='batch_size',type=<class 'int'>,default=512,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Batch size.'}),kw_only=False,_field_type=_FIELD), 'data_path': Field(name='data_path',type=<class 'str'>,default='',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Pretraining - path to the data file.'}),kw_only=False,_field_type=_FIELD), 'data_root': Field(name='data_root',type=<class 'str'>,default='my_data_root',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Finetuning - Data root for the dataset.'}),kw_only=False,_field_type=_FIELD), 'dataset_name': Field(name='dataset_name',type=<class 'str'>,default='sol',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Finetuning - Name of the dataset to be found in the data root directory.'}),kw_only=False,_field_type=_FIELD), 'eval_dataset_length': Field(name='eval_dataset_length',type=typing.Optional[int],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Finetuning - Length of evaluation dataset.'}),kw_only=False,_field_type=_FIELD), 'max_len': Field(name='max_len',type=<class 'int'>,default=100,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Max of length of SMILES.'}),kw_only=False,_field_type=_FIELD), 'measure_name': Field(name='measure_name',type=<class 'str'>,default='measure',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Finetuning - Measure name to be used as groundtruth.'}),kw_only=False,_field_type=_FIELD), 'measure_names': Field(name='measure_names',type=typing.List[str],default=<dataclasses._MISSING_TYPE object>,default_factory=<function MolformerDataArguments.<lambda>>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Class names for multitask classification.'}),kw_only=False,_field_type=_FIELD), 'num_workers': Field(name='num_workers',type=typing.Optional[int],default=1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Number of workers.'}),kw_only=False,_field_type=_FIELD), 'train_dataset_length': Field(name='train_dataset_length',type=typing.Optional[int],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Finetuning - Length of training dataset.'}),kw_only=False,_field_type=_FIELD), 'train_load': Field(name='train_load',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Where to load the model.'}),kw_only=False,_field_type=_FIELD)}
__dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)
__doc__ = 'Data arguments related to Molformer trainer.'
__eq__(other)

Return self==value.

__hash__ = None
__init__(batch_size=512, data_path='', max_len=100, train_load=None, num_workers=1, dataset_name='sol', measure_name='measure', data_root='my_data_root', train_dataset_length=None, eval_dataset_length=None, aug=False, measure_names=<factory>)
__match_args__ = ('batch_size', 'data_path', 'max_len', 'train_load', 'num_workers', 'dataset_name', 'measure_name', 'data_root', 'train_dataset_length', 'eval_dataset_length', 'aug', 'measure_names')
__module__ = 'gt4sd.training_pipelines.pytorch_lightning.molformer.core'
__repr__()

Return repr(self).

class MolformerModelArguments(type='classification', n_head=8, n_layer=12, q_dropout=0.5, d_dropout=0.1, n_embd=768, fc_h=512, dropout=0.1, dims=<factory>, num_classes=None, restart_path='', lr_start=0.00030000000000000003, lr_multiplier=1, seed=12345, min_len=1, root_dir='.', num_feats=32, pooling_mode='cls', fold=0, pretrained_path=None, results_dir='.', debug=False)[source]

Bases: TrainingPipelineArguments

Model arguments related to Molformer trainer.

__name__ = 'MolformerModelArguments'
type: str = 'classification'
n_head: int = 8
n_layer: int = 12
q_dropout: float = 0.5
d_dropout: float = 0.1
n_embd: int = 768
fc_h: int = 512
dropout: float = 0.1
dims: List[int]
num_classes: Optional[int] = None
restart_path: str = ''
lr_start: float = 0.00030000000000000003
lr_multiplier: int = 1
seed: int = 12345
min_len: int = 1
root_dir: str = '.'
num_feats: int = 32
pooling_mode: str = 'cls'
fold: int = 0
pretrained_path: Optional[str] = None
results_dir: str = '.'
debug: bool = False
__annotations__ = {'d_dropout': <class 'float'>, 'debug': <class 'bool'>, 'dims': typing.List[int], 'dropout': <class 'float'>, 'fc_h': <class 'int'>, 'fold': <class 'int'>, 'lr_multiplier': <class 'int'>, 'lr_start': <class 'float'>, 'min_len': <class 'int'>, 'n_embd': <class 'int'>, 'n_head': <class 'int'>, 'n_layer': <class 'int'>, 'num_classes': typing.Optional[int], 'num_feats': <class 'int'>, 'pooling_mode': <class 'str'>, 'pretrained_path': typing.Optional[str], 'q_dropout': <class 'float'>, 'restart_path': <class 'str'>, 'results_dir': <class 'str'>, 'root_dir': <class 'str'>, 'seed': <class 'int'>, 'type': <class 'str'>}
__dataclass_fields__ = {'d_dropout': Field(name='d_dropout',type=<class 'float'>,default=0.1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Decoder layers dropout.'}),kw_only=False,_field_type=_FIELD), 'debug': Field(name='debug',type=<class 'bool'>,default=False,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Debug training'}),kw_only=False,_field_type=_FIELD), 'dims': Field(name='dims',type=typing.List[int],default=<dataclasses._MISSING_TYPE object>,default_factory=<function MolformerModelArguments.<lambda>>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dropout': Field(name='dropout',type=<class 'float'>,default=0.1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Dropout used in finetuning.'}),kw_only=False,_field_type=_FIELD), 'fc_h': Field(name='fc_h',type=<class 'int'>,default=512,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Fully connected hidden dimensionality.'}),kw_only=False,_field_type=_FIELD), 'fold': Field(name='fold',type=<class 'int'>,default=0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'number of folds for fine tuning.'}),kw_only=False,_field_type=_FIELD), 'lr_multiplier': Field(name='lr_multiplier',type=<class 'int'>,default=1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'lr weight multiplier.'}),kw_only=False,_field_type=_FIELD), 'lr_start': Field(name='lr_start',type=<class 'float'>,default=0.00030000000000000003,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Initial lr value.'}),kw_only=False,_field_type=_FIELD), 'min_len': Field(name='min_len',type=<class 'int'>,default=1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'minimum length to be generated.'}),kw_only=False,_field_type=_FIELD), 'n_embd': Field(name='n_embd',type=<class 'int'>,default=768,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Latent vector dimensionality.'}),kw_only=False,_field_type=_FIELD), 'n_head': Field(name='n_head',type=<class 'int'>,default=8,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'GPT number of heads.'}),kw_only=False,_field_type=_FIELD), 'n_layer': Field(name='n_layer',type=<class 'int'>,default=12,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'GPT number of layers.'}),kw_only=False,_field_type=_FIELD), 'num_classes': Field(name='num_classes',type=typing.Optional[int],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Finetuning - Number of classes'}),kw_only=False,_field_type=_FIELD), 'num_feats': Field(name='num_feats',type=<class 'int'>,default=32,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'number of random features for FAVOR+.'}),kw_only=False,_field_type=_FIELD), 'pooling_mode': Field(name='pooling_mode',type=<class 'str'>,default='cls',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'type of pooling to use.'}),kw_only=False,_field_type=_FIELD), 'pretrained_path': Field(name='pretrained_path',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Path to the base pretrained model.'}),kw_only=False,_field_type=_FIELD), 'q_dropout': Field(name='q_dropout',type=<class 'float'>,default=0.5,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Encoder layers dropout.'}),kw_only=False,_field_type=_FIELD), 'restart_path': Field(name='restart_path',type=<class 'str'>,default='',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'path to  trainer file to continue training.'}),kw_only=False,_field_type=_FIELD), 'results_dir': Field(name='results_dir',type=<class 'str'>,default='.',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Path to save evaluation results during training.'}),kw_only=False,_field_type=_FIELD), 'root_dir': Field(name='root_dir',type=<class 'str'>,default='.',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'location of root dir.'}),kw_only=False,_field_type=_FIELD), 'seed': Field(name='seed',type=<class 'int'>,default=12345,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Seed.'}),kw_only=False,_field_type=_FIELD), 'type': Field(name='type',type=<class 'str'>,default='classification',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'The training type, for example pretraining or classification.'}),kw_only=False,_field_type=_FIELD)}
__dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)
__doc__ = 'Model arguments related to Molformer trainer.'
__eq__(other)

Return self==value.

__hash__ = None
__init__(type='classification', n_head=8, n_layer=12, q_dropout=0.5, d_dropout=0.1, n_embd=768, fc_h=512, dropout=0.1, dims=<factory>, num_classes=None, restart_path='', lr_start=0.00030000000000000003, lr_multiplier=1, seed=12345, min_len=1, root_dir='.', num_feats=32, pooling_mode='cls', fold=0, pretrained_path=None, results_dir='.', debug=False)
__match_args__ = ('type', 'n_head', 'n_layer', 'q_dropout', 'd_dropout', 'n_embd', 'fc_h', 'dropout', 'dims', 'num_classes', 'restart_path', 'lr_start', 'lr_multiplier', 'seed', 'min_len', 'root_dir', 'num_feats', 'pooling_mode', 'fold', 'pretrained_path', 'results_dir', 'debug')
__module__ = 'gt4sd.training_pipelines.pytorch_lightning.molformer.core'
__repr__()

Return repr(self).

class MolformerTrainingArguments(accumulate_grad_batches=1, strategy='ddp', gpus=-1, max_epochs=1, monitor=None, save_top_k=1, mode='min', every_n_train_steps=None, every_n_epochs=None, save_last=None, save_dir='logs', basename='lightning_logs', val_check_interval=1.0, gradient_clip_val=50, resume_from_checkpoint=None)[source]

Bases: TrainingPipelineArguments

Training arguments related to Molformer trainer.

__name__ = 'MolformerTrainingArguments'
accumulate_grad_batches: int = 1
strategy: str = 'ddp'
gpus: int = -1
max_epochs: int = 1
monitor: Optional[str] = None
save_top_k: int = 1
mode: str = 'min'
every_n_train_steps: Optional[int] = None
every_n_epochs: Optional[int] = None
save_last: Optional[bool] = None
save_dir: Optional[str] = 'logs'
basename: Optional[str] = 'lightning_logs'
val_check_interval: float = 1.0
gradient_clip_val: float = 50
resume_from_checkpoint: Optional[str] = None
__annotations__ = {'accumulate_grad_batches': <class 'int'>, 'basename': typing.Optional[str], 'every_n_epochs': typing.Optional[int], 'every_n_train_steps': typing.Optional[int], 'gpus': <class 'int'>, 'gradient_clip_val': <class 'float'>, 'max_epochs': <class 'int'>, 'mode': <class 'str'>, 'monitor': typing.Optional[str], 'resume_from_checkpoint': typing.Optional[str], 'save_dir': typing.Optional[str], 'save_last': typing.Optional[bool], 'save_top_k': <class 'int'>, 'strategy': <class 'str'>, 'val_check_interval': <class 'float'>}
__dataclass_fields__ = {'accumulate_grad_batches': Field(name='accumulate_grad_batches',type=<class 'int'>,default=1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Accumulates grads every k batches or as set up in the dict.'}),kw_only=False,_field_type=_FIELD), 'basename': Field(name='basename',type=typing.Optional[str],default='lightning_logs',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Experiment name.'}),kw_only=False,_field_type=_FIELD), 'every_n_epochs': Field(name='every_n_epochs',type=typing.Optional[int],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Number of epochs between checkpoints.'}),kw_only=False,_field_type=_FIELD), 'every_n_train_steps': Field(name='every_n_train_steps',type=typing.Optional[int],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Number of training steps between checkpoints.'}),kw_only=False,_field_type=_FIELD), 'gpus': Field(name='gpus',type=<class 'int'>,default=-1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'number of gpus to use.'}),kw_only=False,_field_type=_FIELD), 'gradient_clip_val': Field(name='gradient_clip_val',type=<class 'float'>,default=50,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Gradient clipping value.'}),kw_only=False,_field_type=_FIELD), 'max_epochs': Field(name='max_epochs',type=<class 'int'>,default=1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'max number of epochs.'}),kw_only=False,_field_type=_FIELD), 'mode': Field(name='mode',type=<class 'str'>,default='min',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Quantity to monitor in order to store a checkpoint.'}),kw_only=False,_field_type=_FIELD), 'monitor': Field(name='monitor',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Quantity to monitor in order to store a checkpoint.'}),kw_only=False,_field_type=_FIELD), 'resume_from_checkpoint': Field(name='resume_from_checkpoint',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Path/URL of the checkpoint from which training is resumed.'}),kw_only=False,_field_type=_FIELD), 'save_dir': Field(name='save_dir',type=typing.Optional[str],default='logs',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Save directory for logs and output.'}),kw_only=False,_field_type=_FIELD), 'save_last': Field(name='save_last',type=typing.Optional[bool],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'When True, always saves the model at the end of the epoch to a file last.ckpt'}),kw_only=False,_field_type=_FIELD), 'save_top_k': Field(name='save_top_k',type=<class 'int'>,default=1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'The best k models according to the quantity monitored will be saved.'}),kw_only=False,_field_type=_FIELD), 'strategy': Field(name='strategy',type=<class 'str'>,default='ddp',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'The accelerator backend to use (previously known as distributed_backend).'}),kw_only=False,_field_type=_FIELD), 'val_check_interval': Field(name='val_check_interval',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': ' How often to check the validation set.'}),kw_only=False,_field_type=_FIELD)}
__dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)
__doc__ = 'Training arguments related to Molformer trainer.'
__eq__(other)

Return self==value.

__hash__ = None
__init__(accumulate_grad_batches=1, strategy='ddp', gpus=-1, max_epochs=1, monitor=None, save_top_k=1, mode='min', every_n_train_steps=None, every_n_epochs=None, save_last=None, save_dir='logs', basename='lightning_logs', val_check_interval=1.0, gradient_clip_val=50, resume_from_checkpoint=None)
__match_args__ = ('accumulate_grad_batches', 'strategy', 'gpus', 'max_epochs', 'monitor', 'save_top_k', 'mode', 'every_n_train_steps', 'every_n_epochs', 'save_last', 'save_dir', 'basename', 'val_check_interval', 'gradient_clip_val', 'resume_from_checkpoint')
__module__ = 'gt4sd.training_pipelines.pytorch_lightning.molformer.core'
__repr__()

Return repr(self).

class MolformerSavingArguments[source]

Bases: TrainingPipelineArguments

Saving arguments related to Molformer trainer.

__name__ = 'MolformerSavingArguments'
__annotations__ = {}
__dataclass_fields__ = {}
__dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)
__doc__ = 'Saving arguments related to Molformer trainer.'
__eq__(other)

Return self==value.

__hash__ = None
__init__()
__match_args__ = ()
__module__ = 'gt4sd.training_pipelines.pytorch_lightning.molformer.core'
__repr__()

Return repr(self).