gt4sd.training_pipelines.guacamol_baselines.smiles_lstm.core module¶
SMILES LSTM training pipeline from GuacaMol.
Summary¶
Classes:
Arguments related to SMILES LSTM trainer. |
|
Training Arguments related to SMILES LSTM trainer. |
|
GuacaMol SMILES LSTM training pipeline. |
Reference¶
- class GuacaMolLSTMTrainingPipeline[source]¶
Bases:
GuacaMolBaselinesTrainingPipeline
GuacaMol SMILES LSTM training pipeline.
- train(training_args, model_args, dataset_args)[source]¶
Generic training function for GuacaMol Baselines training.
- Parameters
training_args (
Dict
[str
,Any
]) – training arguments passed to the configuration.model_args (
Dict
[str
,Any
]) – model arguments passed to the configuration.dataset_args (
Dict
[str
,Any
]) – dataset arguments passed to the configuration.
- Raises
NotImplementedError – the generic trainer does not implement the pipeline.
- Return type
None
- __annotations__ = {}¶
- __doc__ = 'GuacaMol SMILES LSTM training pipeline.'¶
- __module__ = 'gt4sd.training_pipelines.guacamol_baselines.smiles_lstm.core'¶
- class GuacaMolLSTMTrainingArguments(output_dir, batch_size=512, valid_every=1000, n_epochs=10, lr=0.001)[source]¶
Bases:
TrainingPipelineArguments
Training Arguments related to SMILES LSTM trainer.
- __name__ = 'GuacaMolLSTMTrainingArguments'¶
- output_dir: str¶
- batch_size: int = 512¶
- valid_every: int = 1000¶
- n_epochs: int = 10¶
- lr: float = 0.001¶
- __annotations__ = {'batch_size': <class 'int'>, 'lr': <class 'float'>, 'n_epochs': <class 'int'>, 'output_dir': <class 'str'>, 'valid_every': <class 'int'>}¶
- __dataclass_fields__ = {'batch_size': Field(name='batch_size',type=<class 'int'>,default=512,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Size of a mini-batch for gradient descent.'}),kw_only=False,_field_type=_FIELD), 'lr': Field(name='lr',type=<class 'float'>,default=0.001,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'RNN learning rate.'}),kw_only=False,_field_type=_FIELD), 'n_epochs': Field(name='n_epochs',type=<class 'int'>,default=10,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Number of training epochs.'}),kw_only=False,_field_type=_FIELD), 'output_dir': Field(name='output_dir',type=<class 'str'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Output directory.'}),kw_only=False,_field_type=_FIELD), 'valid_every': Field(name='valid_every',type=<class 'int'>,default=1000,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Validate every so many batches.'}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __doc__ = 'Training Arguments related to SMILES LSTM trainer.'¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(output_dir, batch_size=512, valid_every=1000, n_epochs=10, lr=0.001)¶
- __match_args__ = ('output_dir', 'batch_size', 'valid_every', 'n_epochs', 'lr')¶
- __module__ = 'gt4sd.training_pipelines.guacamol_baselines.smiles_lstm.core'¶
- __repr__()¶
Return repr(self).
- class GuacaMolLSTMModelArguments(hidden_size=512, n_layers=3, rnn_dropout=0.2, max_len=100)[source]¶
Bases:
TrainingPipelineArguments
Arguments related to SMILES LSTM trainer.
- __name__ = 'GuacaMolLSTMModelArguments'¶
- n_layers: int = 3¶
- rnn_dropout: float = 0.2¶
- max_len: int = 100¶
- __annotations__ = {'hidden_size': <class 'int'>, 'max_len': <class 'int'>, 'n_layers': <class 'int'>, 'rnn_dropout': <class 'float'>}¶
- __dataclass_fields__ = {'hidden_size': Field(name='hidden_size',type=<class 'int'>,default=512,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Size of hidden layer.'}),kw_only=False,_field_type=_FIELD), 'max_len': Field(name='max_len',type=<class 'int'>,default=100,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Max length of a SMILES string.'}),kw_only=False,_field_type=_FIELD), 'n_layers': Field(name='n_layers',type=<class 'int'>,default=3,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Number of layers for training.'}),kw_only=False,_field_type=_FIELD), 'rnn_dropout': Field(name='rnn_dropout',type=<class 'float'>,default=0.2,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Dropout value for RNN.'}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __doc__ = 'Arguments related to SMILES LSTM trainer.'¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(hidden_size=512, n_layers=3, rnn_dropout=0.2, max_len=100)¶
- __match_args__ = ('hidden_size', 'n_layers', 'rnn_dropout', 'max_len')¶
- __module__ = 'gt4sd.training_pipelines.guacamol_baselines.smiles_lstm.core'¶
- __repr__()¶
Return repr(self).