gt4sd.cli.upload module¶
Run model upload for the GT4SD. Two steps procedure: check if the folder/model name is already in the database. If not, upload it.
Summary¶
Classes:
| Argument parser using a custom help logic. | |
| Algorithm saving arguments. | 
Functions:
| Run an algorithm saving pipeline. | 
Reference¶
- class SavingArguments(training_pipeline_name, target_version, algorithm_type=None, domain=None, algorithm_name=None, algorithm_application=None, source_version=None)[source]¶
- Bases: - object- Algorithm saving arguments. - __name__ = 'SavingArguments'¶
 - training_pipeline_name: str¶
 - target_version: str¶
 - algorithm_type: Optional[str] = None¶
 - domain: Optional[str] = None¶
 - algorithm_name: Optional[str] = None¶
 - algorithm_application: Optional[str] = None¶
 - source_version: Optional[str] = None¶
 - __annotations__ = {'algorithm_application': typing.Optional[str], 'algorithm_name': typing.Optional[str], 'algorithm_type': typing.Optional[str], 'domain': typing.Optional[str], 'source_version': typing.Optional[str], 'target_version': <class 'str'>, 'training_pipeline_name': <class 'str'>}¶
 - __dataclass_fields__ = {'algorithm_application': Field(name='algorithm_application',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Inference algorithm application.'}),kw_only=False,_field_type=_FIELD), 'algorithm_name': Field(name='algorithm_name',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Inference algorithm name.'}),kw_only=False,_field_type=_FIELD), 'algorithm_type': Field(name='algorithm_type',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Inference algorithm type, supported types: conditional_generation, controlled_sampling, generation, prediction.'}),kw_only=False,_field_type=_FIELD), 'domain': Field(name='domain',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Domain of the inference algorithm, supported types: materials, nlp, vision.'}),kw_only=False,_field_type=_FIELD), 'source_version': Field(name='source_version',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Source algorithm version to use for missing artifacts.'}),kw_only=False,_field_type=_FIELD), 'target_version': Field(name='target_version',type=<class 'str'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Target algorithm version to save.'}),kw_only=False,_field_type=_FIELD), 'training_pipeline_name': Field(name='training_pipeline_name',type=<class 'str'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Training pipeline name, supported pipelines: cgcnn, crystals-rfc, diffusion-trainer, gflownet-trainer, granular-trainer, guacamol-lstm-trainer, language-modeling-trainer, molformer, moses-organ-trainer, moses-vae-trainer, paccmann-vae-trainer, regression-transformer-trainer, torchdrug-gcpn-trainer, torchdrug-graphaf-trainer.'}),kw_only=False,_field_type=_FIELD)}¶
 - __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
 - __dict__ = mappingproxy({'__module__': 'gt4sd.cli.upload', '__annotations__': {'training_pipeline_name': <class 'str'>, 'target_version': <class 'str'>, 'algorithm_type': typing.Optional[str], 'domain': typing.Optional[str], 'algorithm_name': typing.Optional[str], 'algorithm_application': typing.Optional[str], 'source_version': typing.Optional[str]}, '__doc__': 'Algorithm saving arguments.', '__name__': 'saving_base_args', 'algorithm_type': None, 'domain': None, 'algorithm_name': None, 'algorithm_application': None, 'source_version': None, '__dict__': <attribute '__dict__' of 'SavingArguments' objects>, '__weakref__': <attribute '__weakref__' of 'SavingArguments' objects>, '__dataclass_params__': _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False), '__dataclass_fields__': {'training_pipeline_name': Field(name='training_pipeline_name',type=<class 'str'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Training pipeline name, supported pipelines: cgcnn, crystals-rfc, diffusion-trainer, gflownet-trainer, granular-trainer, guacamol-lstm-trainer, language-modeling-trainer, molformer, moses-organ-trainer, moses-vae-trainer, paccmann-vae-trainer, regression-transformer-trainer, torchdrug-gcpn-trainer, torchdrug-graphaf-trainer.'}),kw_only=False,_field_type=_FIELD), 'target_version': Field(name='target_version',type=<class 'str'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Target algorithm version to save.'}),kw_only=False,_field_type=_FIELD), 'algorithm_type': Field(name='algorithm_type',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Inference algorithm type, supported types: conditional_generation, controlled_sampling, generation, prediction.'}),kw_only=False,_field_type=_FIELD), 'domain': Field(name='domain',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Domain of the inference algorithm, supported types: materials, nlp, vision.'}),kw_only=False,_field_type=_FIELD), 'algorithm_name': Field(name='algorithm_name',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Inference algorithm name.'}),kw_only=False,_field_type=_FIELD), 'algorithm_application': Field(name='algorithm_application',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Inference algorithm application.'}),kw_only=False,_field_type=_FIELD), 'source_version': Field(name='source_version',type=typing.Optional[str],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({'help': 'Source algorithm version to use for missing artifacts.'}),kw_only=False,_field_type=_FIELD)}, '__init__': <function SavingArguments.__init__>, '__repr__': <function SavingArguments.__repr__>, '__eq__': <function SavingArguments.__eq__>, '__hash__': None, '__match_args__': ('training_pipeline_name', 'target_version', 'algorithm_type', 'domain', 'algorithm_name', 'algorithm_application', 'source_version')})¶
 - __doc__ = 'Algorithm saving arguments.'¶
 - __eq__(other)¶
- Return self==value. 
 - __hash__ = None¶
 - __init__(training_pipeline_name, target_version, algorithm_type=None, domain=None, algorithm_name=None, algorithm_application=None, source_version=None)¶
 - __match_args__ = ('training_pipeline_name', 'target_version', 'algorithm_type', 'domain', 'algorithm_name', 'algorithm_application', 'source_version')¶
 - __module__ = 'gt4sd.cli.upload'¶
 - __repr__()¶
- Return repr(self). 
 - __weakref__¶
- list of weak references to the object (if defined) 
 
- class SavingArgumentParser(dataclass_types, **kwargs)[source]¶
- Bases: - ArgumentParser- Argument parser using a custom help logic. - print_help(file=None)[source]¶
- Print help checking dynamically whether a specific pipeline is passed. - Parameters
- file ( - Optional[- IO[- str],- None]) – an optional I/O stream. Defaults to None, a.k.a., stdout and stderr.
- Return type
- None
 
 - __annotations__ = {}¶
 - __doc__ = 'Argument parser using a custom help logic.'¶
 - __module__ = 'gt4sd.cli.upload'¶