Source code for gt4sd.cli.upload

#!/usr/bin/env python
#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#

"""Run model upload for the GT4SD.
   Two steps procedure: check if the folder/model name is already in the database.
   If not, upload it.
"""

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import IO, Iterable, Optional, cast

from ..algorithms.registry import ApplicationsRegistry
from ..training_pipelines import TRAINING_PIPELINE_ARGUMENTS_FOR_MODEL_SAVING
from ..training_pipelines.core import TrainingPipelineArguments
from .algorithms import (
    AVAILABLE_ALGORITHMS,
    AVAILABLE_ALGORITHMS_CATEGORIES,
    filter_algorithm_applications,
    get_configuration_tuples,
)
from .argument_parser import ArgumentParser, DataClassType

logger = logging.getLogger(__name__)

SUPPORTED_TRAINING_PIPELINES = sorted(
    TRAINING_PIPELINE_ARGUMENTS_FOR_MODEL_SAVING.keys()
)


[docs]@dataclass class SavingArguments: """Algorithm saving arguments.""" __name__ = "saving_base_args" training_pipeline_name: str = field( metadata={ "help": f"Training pipeline name, supported pipelines: {', '.join(SUPPORTED_TRAINING_PIPELINES)}." }, ) target_version: str = field( metadata={"help": "Target algorithm version to save."}, ) algorithm_type: Optional[str] = field( default=None, metadata={ "help": f"Inference algorithm type, supported types: {', '.join(AVAILABLE_ALGORITHMS_CATEGORIES['algorithm_type'])}." }, ) domain: Optional[str] = field( default=None, metadata={ "help": f"Domain of the inference algorithm, supported types: {', '.join(AVAILABLE_ALGORITHMS_CATEGORIES['domain'])}." }, ) algorithm_name: Optional[str] = field( default=None, metadata={"help": "Inference algorithm name."}, ) algorithm_application: Optional[str] = field( default=None, metadata={"help": "Inference algorithm application."}, ) source_version: Optional[str] = field( default=None, metadata={"help": "Source algorithm version to use for missing artifacts."}, )
[docs]class SavingArgumentParser(ArgumentParser): """Argument parser using a custom help logic."""
[docs] def print_help(self, file: Optional[IO[str]] = None) -> None: """Print help checking dynamically whether a specific pipeline is passed. Args: file: an optional I/O stream. Defaults to None, a.k.a., stdout and stderr. """ try: help_args_set = {"-h", "--help"} if ( len(set(sys.argv).union(help_args_set)) < len(help_args_set) + 2 ): # considering filename super().print_help() return args = [arg for arg in sys.argv if arg not in help_args_set] parsed_arguments = super().parse_args_into_dataclasses( args=args, return_remaining_strings=True ) trainer_arguments = None for arguments in parsed_arguments: if arguments.__name__ == "trainer_base_args": trainer_arguments = arguments break if trainer_arguments: trainer_arguments.training_pipeline_name training_pipeline_arguments = ( TRAINING_PIPELINE_ARGUMENTS_FOR_MODEL_SAVING.get( trainer_arguments.training_pipeline_name, TrainingPipelineArguments, ) ) parser = ArgumentParser( tuple( [SavingArguments, *training_pipeline_arguments] # type:ignore ) ) parser.print_help() except Exception: super().print_help()
[docs]def main() -> None: """ Run an algorithm saving pipeline. Raises: ValueError: in case the provided training pipeline provided is not supported. """ logging.basicConfig(stream=sys.stdout, level=logging.INFO) base_args = SavingArgumentParser( cast(DataClassType, SavingArguments) ).parse_args_into_dataclasses(return_remaining_strings=True)[0] training_pipeline_name = base_args.training_pipeline_name if training_pipeline_name not in set(SUPPORTED_TRAINING_PIPELINES): ValueError( f"Training pipeline {training_pipeline_name} is not supported. Supported types: {', '.join(SUPPORTED_TRAINING_PIPELINES)}." ) training_pipeline_saving_arguments = TRAINING_PIPELINE_ARGUMENTS_FOR_MODEL_SAVING[ training_pipeline_name ] parser = SavingArgumentParser( cast( Iterable[DataClassType], tuple([SavingArguments, training_pipeline_saving_arguments]), ) ) saving_args, training_pipeline_saving_args, _ = parser.parse_args_into_dataclasses( return_remaining_strings=True ) filters = { key: saving_args.__dict__[key] for key in [ "algorithm_type", "algorithm_application", "domain", "algorithm_name", "source_version", ] } configuration_tuples = get_configuration_tuples( filter_algorithm_applications(algorithms=AVAILABLE_ALGORITHMS, filters=filters) ) # too many configurations compatible if len(configuration_tuples) > 1: logger.info( f"Multiple configurations matching the parameters:{os.linesep}" f"{os.linesep.join(map(str, configuration_tuples))}{os.linesep}" f"Select one by specifying additional algorithms parameters: {','.join('--' + key for key, value in filters.items() if not value)}.", ) return # no configurations compatible elif len(configuration_tuples) < 1: provided_filters = {key: value for key, value in filters.items() if value} logger.error( "No configurations matching the provided parameters, " f"please review the supported configurations:{os.linesep}" f"{os.linesep.join(map(str, configuration_tuples))}{os.linesep}" f"Please review the parameters provided:{os.linesep}" f"{provided_filters}" ) configuration_tuple = configuration_tuples[0] logger.info(f"Selected configuration: {configuration_tuple}") algorithm_application = ApplicationsRegistry.applications[configuration_tuple] configuration_class = algorithm_application.configuration_class logger.info( f'Saving model version "{saving_args.target_version}" with the following configuration: {configuration_class}' ) # implement upload method using minio and s3.py # core.py and configuration.py configuration_class.upload_version_from_training_pipeline_arguments( training_pipeline_arguments=training_pipeline_saving_args, target_version=saving_args.target_version, source_version=saving_args.source_version, )
if __name__ == "__main__": main()