gt4sd.algorithms.controlled_sampling.advanced_manufacturing.implementation.nccr.core module¶
Catalyst design for NCCR project.
Summary¶
Classes:
Catalyst binding energy predictor for suzuki reactions.  | 
|
Catalyst generator.  | 
|
Catalyst VAE for suzuki reactions.  | 
Reference¶
- class CatalystVAE(resources_path, padding_length=127, maximum_length=100, primer_smiles='', checkpoint_filename='epoch=199-step=5799.ckpt')[source]¶
 Bases:
RepresentationCatalyst VAE for suzuki reactions.
- __init__(resources_path, padding_length=127, maximum_length=100, primer_smiles='', checkpoint_filename='epoch=199-step=5799.ckpt')[source]¶
 Constructs a CatalystVAE.
- Parameters
 resources_path (
str) – directory where to find models and configurations.pading_length – size of the padded sequence. Defaults to 127.
maximum_length (
int) – maximum length of the synthesis.primer_smiles (
str) – primer SMILES representation. Default to “”, a.k.a., no primer.checkpoint_filename (
str) – checkpoint filename. Defaults to “epoch=199-step=5799.ckpt”.
- model: GranularEncoderDecoderModel¶
 
- smiles_to_latent(smiles)[source]¶
 Encode a SMILES into a latent point.
- Parameters
 smiles (
str) – a SMILES representation of a molecule.- Return type
 Union[ndarray,Tensor,Series]- Returns
 the encoded latent space point.
- decode(z)[source]¶
 Decode a catalyst from the latent space.
- Parameters
 z (
Union[ndarray,Tensor,Series]) – a latent space point.- Return type
 str- Returns
 a catalyst in SMILES format.
- __annotations__ = {'fixed_representation': 'Optional[torch.Tensor]', 'model': <class 'gt4sd.frameworks.granular.ml.models.base_model.GranularEncoderDecoderModel'>, 'z_dimension': 'int', 'z_index': 'Optional[slice]'}¶
 
- __doc__ = 'Catalyst VAE for suzuki reactions.'¶
 
- __module__ = 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.implementation.nccr.core'¶
 
- class CatalystBindingEnergyPredictor(resources_path, checkpoint_filename='epoch=199-step=5799.ckpt')[source]¶
 Bases:
PropertyPredictorCatalyst binding energy predictor for suzuki reactions.
- __init__(resources_path, checkpoint_filename='epoch=199-step=5799.ckpt')[source]¶
 Constructs a CatalystBindingEnergyPredictor.
- Parameters
 resources_path (
str) – directory where to find models and configurations.checkpoint_filename (
str) – checkpoint filename. Defaults to “epoch=199-step=5799.ckpt”.
- model: MlpPredictor¶
 
- __call__(z)[source]¶
 Predict binding energy.
- Parameters
 z (
Union[ndarray,Tensor,Series]) – a latent space point.- Return type
 float- Returns
 the predicted binding energy.
- __annotations__ = {'input_representations': 'Optional[List[str]]', 'model': <class 'gt4sd.frameworks.granular.ml.models.mlp_predictor.core.MlpPredictor'>}¶
 
- __doc__ = 'Catalyst binding energy predictor for suzuki reactions.'¶
 
- __module__ = 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.implementation.nccr.core'¶
 
- class CatalystGenerator(resources_path, generated_length=100, number_of_points=10, number_of_steps=50, primer_smiles='', checkpoint_filename='epoch=199-step=5799.ckpt')[source]¶
 Bases:
GeneratorCatalyst generator.
- __init__(resources_path, generated_length=100, number_of_points=10, number_of_steps=50, primer_smiles='', checkpoint_filename='epoch=199-step=5799.ckpt')[source]¶
 Constructs catalyst generator.
- Parameters
 resource_path – directory where to find models and configurations.
generated_length (
int) – maximum lenght of the generated molecule. Defaults to 100.number_of_points (
int) – number of optimal points to return. Defaults to 10.number_of_steps (
int) – number of optimization steps. Defaults to 50.primer_smiles (
str) – primer SMILES representation. Default to “”, a.k.a., no primer.checkpoint_filename (
str) – checkpoint filename. Defaults to “epoch=199-step=5799.ckpt”.
- __annotations__ = {}¶
 
- __doc__ = 'Catalyst generator.'¶
 
- __module__ = 'gt4sd.algorithms.controlled_sampling.advanced_manufacturing.implementation.nccr.core'¶