gt4sd.algorithms.conditional_generation.reinvent.implementation module¶
Implementation of Reinvent conditional generators.
Summary¶
Classes:
Reference¶
- class SampledTuple(scaffold, decoration, nll)[source]¶
Bases:
NamedTuple
- scaffold: str¶
Alias for field number 0
- decoration: str¶
Alias for field number 1
- nll: float¶
Alias for field number 2
- __annotations__ = {'decoration': <class 'str'>, 'nll': <class 'float'>, 'scaffold': <class 'str'>}¶
- __doc__ = 'SampledTuple(scaffold, decoration, nll)'¶
- __getnewargs__()¶
Return self as a plain tuple. Used by copy and pickle.
- __match_args__ = ('scaffold', 'decoration', 'nll')¶
- __module__ = 'gt4sd.algorithms.conditional_generation.reinvent.implementation'¶
- __orig_bases__ = (<function NamedTuple>,)¶
- __repr__()¶
Return a nicely formatted representation string
- __slots__ = ()¶
- _asdict()¶
Return a new dict which maps field names to their values.
- _field_defaults = {}¶
- _fields = ('scaffold', 'decoration', 'nll')¶
- classmethod _make(iterable)¶
Make a new SampledTuple object from a sequence or iterable
- _replace(**kwds)¶
Return a new SampledTuple object replacing specified fields with new values
- class ReinventConditionalGenerator(resources_path, batch_size, randomize, sample_uniquely, max_sequence_length)[source]¶
Bases:
ReinventBase
- __init__(resources_path, batch_size, randomize, sample_uniquely, max_sequence_length)[source]¶
Initialize Reinvent.
- Parameters
resources_path (
str
) – path where to load hypothesis, candidate labels and, optionally, the model.batch_size (
int
) – number of samples to generate per scaffold.randomize (
bool
) – randomize the scaffolds if set to true.sample_uniquely (
bool
) – generate unique sample sequences if set to true.max_sequence_length (
int
) – maximum length of the generated sequences.
- sample_unique_sequences(sampled_sequences)[source]¶
Samples the model for the given number of SMILES.
- Parameters
scaffold_list – A list of SampledTuple.
- Return type
List
[Tuple
]- Returns
A list of SampledTuple.
- generate_sampled_tuples(scaffold)[source]¶
Samples the model for the given number of SMILES. :param scaffold_list: A list of scaffold SMILES.
- Return type
Set
[SampledTuple
]- Returns
A Set of SampledTuple.
- generate_samples(scaffold)[source]¶
Samples the model for the given number of SMILES.
- Parameters
scaffold (
str
) – A scaffold SMILES.- Return type
Set
[str
]- Returns
A Set of SMILES representing molecules.
- __doc__ = None¶
- __module__ = 'gt4sd.algorithms.conditional_generation.reinvent.implementation'¶