gt4sd.algorithms.conditional_generation.key_bert.implementation module¶
Implementation of the KeyBERT keyword extractor.
Summary¶
Classes:
Keyword extractor based on [KeyBERT](https://github.com/MaartenGr/KeyBERT). |
Reference¶
- class KeyBERT(resources_path, minimum_keyphrase_ngram, maximum_keyphrase_ngram, stop_words, top_n, use_maxsum, use_mmr, diversity, number_of_candidates, model_name, device=None)[source]¶
Bases:
object
Keyword extractor based on [KeyBERT](https://github.com/MaartenGr/KeyBERT).
- __init__(resources_path, minimum_keyphrase_ngram, maximum_keyphrase_ngram, stop_words, top_n, use_maxsum, use_mmr, diversity, number_of_candidates, model_name, device=None)[source]¶
Initialize KeyBERT.
- Parameters
resources_path (
str
) – path where to load hypothesis, candidate labels and, optionally, the model.minimum_keyphrase_ngram (
int
) – lower bound for phrase size.maximum_keyphrase_ngram (
int
) – upper bound for phrase size.stop_words (
Optional
[str
,None
]) – language for the stop words removal. If not provided, no stop words removal.top_n (
int
) – number of keywords to extract.use_maxsum (
bool
) – control usage of max sum similarity for keywords generated.use_mmr (
bool
) – control usage of max marginal relevance for keywords generated.diversity (
float
) – diversity for the results when enabling use_mmr.number_of_candidates (
int
) – candidates considered when enabling use_maxsum.model_name (
str
) – name of the model to load from the cache or download from SentenceTransformers.device (
Union
[device
,str
,None
]) – device where the inference is running either as a dedicated class or a string. If not provided is inferred.
- predict(text)[source]¶
Get keywords sorted by relevance.
- Parameters
text (
str
) – text to extract keywords from.- Return type
List
[str
]- Returns
keywords sorted by score from highest to lowest.
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.conditional_generation.key_bert.implementation', '__doc__': '\n Keyword extractor based on [KeyBERT](https://github.com/MaartenGr/KeyBERT).\n ', '__init__': <function KeyBERT.__init__>, 'load_model': <function KeyBERT.load_model>, 'predict': <function KeyBERT.predict>, '__dict__': <attribute '__dict__' of 'KeyBERT' objects>, '__weakref__': <attribute '__weakref__' of 'KeyBERT' objects>, '__annotations__': {}})¶
- __doc__ = '\n Keyword extractor based on [KeyBERT](https://github.com/MaartenGr/KeyBERT).\n '¶
- __module__ = 'gt4sd.algorithms.conditional_generation.key_bert.implementation'¶
- __weakref__¶
list of weak references to the object (if defined)