gt4sd.algorithms.conditional_generation.guacamol.implementation.smiles_lstm_ppo module¶
Recurrent Neural Networks with Proximal Policy Optimization algorithm implementation.
Summary¶
Classes:
Reference¶
- class SMILESLSTMPPO(model_path, num_epochs, episode_size, optimize_batch_size, entropy_weight, kl_div_weight, clip_param)[source]¶
Bases:
object
- __init__(model_path, num_epochs, episode_size, optimize_batch_size, entropy_weight, kl_div_weight, clip_param)[source]¶
Initialize SMILESLSTMPPO.
- Parameters
model_path (
str
) – path to load the model.num_epochs (
int
) – number of epochs to sample.episode_size (
int
) – number of molecules sampled by the policy at the start of a series of ppo updates.optimize_batch_size (
int
) – batch size for the optimization.entropy_weight (
int
) – used for calculating entropy loss.kl_div_weight (
int
) – used for calculating Kullback-Leibler divergence loss.clip_param (
float
) – used for determining how far the new policy is from the old one.
- get_generator()[source]¶
Create an instance of the PPODirectedGenerator.
- Return type
PPODirectedGenerator
- Returns
an instance of PPODirectedGenerator.
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.conditional_generation.guacamol.implementation.smiles_lstm_ppo', '__init__': <function SMILESLSTMPPO.__init__>, 'get_generator': <function SMILESLSTMPPO.get_generator>, '__dict__': <attribute '__dict__' of 'SMILESLSTMPPO' objects>, '__weakref__': <attribute '__weakref__' of 'SMILESLSTMPPO' objects>, '__doc__': None, '__annotations__': {}})¶
- __doc__ = None¶
- __module__ = 'gt4sd.algorithms.conditional_generation.guacamol.implementation.smiles_lstm_ppo'¶
- __weakref__¶
list of weak references to the object (if defined)