gt4sd.algorithms.conditional_generation.guacamol.implementation.smiles_ga module

SMILES GA implementation.

Summary

Classes:

SMILESGA

Reference

class SMILESGA(smi_file, population_size, n_mutations, n_jobs, random_start, gene_size, generations, patience)[source]

Bases: object

__init__(smi_file, population_size, n_mutations, n_jobs, random_start, gene_size, generations, patience)[source]

Initialize SMILESGA.

Parameters
  • smi_file – path where to load hypothesis, candidate labels and, optionally, the smiles file.

  • population_size (int) – used with n_mutations for the initial generation of smiles within the population.

  • n_mutations (int) – used with population size for the initial generation of smiles within the population.

  • n_jobs (int) – number of concurrently running jobs.

  • random_start (bool) – set to True to randomly choose list of SMILES for generating optimizied molecules.

  • gene_size (int) – size of the gene which is used in creation of genes.

  • generations (int) – number of evolutionary generations.

  • patience (int) – used for early stopping if population scores remains the same after generating molecules.

get_generator()[source]

Create an instance of ChemGEGenerator.

Return type

ChemGEGenerator

Returns

an instance of ChemGEGenerator.

__dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.conditional_generation.guacamol.implementation.smiles_ga', '__init__': <function SMILESGA.__init__>, 'get_generator': <function SMILESGA.get_generator>, '__dict__': <attribute '__dict__' of 'SMILESGA' objects>, '__weakref__': <attribute '__weakref__' of 'SMILESGA' objects>, '__doc__': None, '__annotations__': {}})
__doc__ = None
__module__ = 'gt4sd.algorithms.conditional_generation.guacamol.implementation.smiles_ga'
__weakref__

list of weak references to the object (if defined)