gt4sd.algorithms.conditional_generation.guacamol.implementation.graph_ga module¶
Graph GA implementation.
Summary¶
Classes:
Reference¶
- class GraphGA(smi_file, mutation_rate, population_size, offspring_size, n_jobs, random_start, generations, patience)[source]¶
Bases:
object
- __init__(smi_file, mutation_rate, population_size, offspring_size, n_jobs, random_start, generations, patience)[source]¶
Initialize SMILESGA.
- Parameters
smi_file – path where to load hypothesis, candidate labels and, optionally, the smiles file.
population_size (
int
) – used with n_mutations for the initial generation of smiles within the population.n_jobs (
int
) – number of concurrently running jobs.random_start (
bool
) – set to True to randomly choose list of SMILES for generating optimizied molecules.generations (
int
) – number of evolutionary generations.patience (
int
) – used for early stopping if population scores remains the same after generating molecules.mutation_rate (
float
) – frequency of the new mutations in a single gene or organism over time.offspring_size (
int
) – number of molecules to select for new population.
- get_generator()[source]¶
Create an instance of the GB_GA_Generator.
- Return type
GB_GA_Generator
- Returns
an instance of GB_GA_Generator.
- __dict__ = mappingproxy({'__module__': 'gt4sd.algorithms.conditional_generation.guacamol.implementation.graph_ga', '__init__': <function GraphGA.__init__>, 'get_generator': <function GraphGA.get_generator>, '__dict__': <attribute '__dict__' of 'GraphGA' objects>, '__weakref__': <attribute '__weakref__' of 'GraphGA' objects>, '__doc__': None, '__annotations__': {}})¶
- __doc__ = None¶
- __module__ = 'gt4sd.algorithms.conditional_generation.guacamol.implementation.graph_ga'¶
- __weakref__¶
list of weak references to the object (if defined)