Source code for gt4sd.properties.scorer

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from typing import List, Union

from rdkit import Chem

from .core import PropertyPredictor
from .molecules import AVAILABLE_MOLECULES_PROPERTY_PREDICTOR
from .proteins import AVAILABLE_PROTEINS_PROPERTY_PREDICTOR
from .scores import DistanceScorer


[docs]class PropertyPredictorScorer(DistanceScorer): """Property Predictor Scorer."""
[docs] def __init__( self, name: str, scoring_function: PropertyPredictor, target: Union[float, int], ) -> None: """Scoring function that calculates a generic score for a property. Args: name: name of the property to score. Needed for validation. scoring_function: callable scoring function. target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]). """ self.name = name self.target = target self.scoring_function = scoring_function super().__init__()
[docs] def score(self, sample: str) -> float: """Generates a score for a given molecule or protein. Args: sample: molecule or protein. Returns: A score for the given molecule or protein. """ self.validate_input(sample=sample, property_name=self.name) return self.get_distance(self.scoring_function(sample) - self.target)
[docs] def score_list(self, sample_list: List[str]) -> List[float]: """Generates a list of scores for a given molecule or protein list. Args: samples_list: A List of molecules or proteins. Returns: A List of scores """ scores = [] for sample in sample_list: scores.append(self.score(sample)) return scores
[docs] def predictor(self, sample: str) -> Union[float, int]: """Generates a prediction for a given molecule or protein. Args: sample: molecule or protein. Returns: A score for the given SMILES """ self.validate_input(sample=sample, property_name=self.name) return self.scoring_function(sample)
[docs] def validate_input(self, sample: str, property_name: str) -> None: """Validates the sample in input. If self.name is a property available for molecules, check that sample is a SMILES. If self.name is a property available for proteins, check that sample is a protein. Args: sample: molecule or protein. Raises: ValueError: if the sample is not a valid SMILES or protein given a certain property. Returns: True if the input is valid. """ # if selected property is available for molecules if self.name in AVAILABLE_MOLECULES_PROPERTY_PREDICTOR: # check that sample is a valid SMILES, if not raise error if Chem.MolFromSmiles(sample) is None: raise ValueError( f"{property_name} is a property available for molecules and {sample} is not a valid SMILES. Please input a molecule." ) # if selected property is available for proteins elif self.name in AVAILABLE_PROTEINS_PROPERTY_PREDICTOR: # check that sample is a valid FASTA, if not raise error if Chem.MolFromFASTA(sample) is None: raise ValueError( f"{property_name} is a property available for proteins and {sample} is not a valid FASTA. Plese input a protein." ) # if property is not available, raise error else: raise ValueError( f"{property_name} is not available or not a valid property." )
[docs]class MoleculePropertyPredictorScorer(PropertyPredictorScorer): """Property Predictor Scorer for molecules."""
[docs] def __init__( self, name: str, scoring_function: PropertyPredictor, target: Union[float, int], ) -> None: """Scoring function that calculates a generic score for a property in molecules. Args: name: name of the property to score. scoring_function: callable scoring function. target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]). """ if name not in AVAILABLE_MOLECULES_PROPERTY_PREDICTOR: raise ValueError(f"property {name} not available for molecules.") super().__init__(name=name, scoring_function=scoring_function, target=target)
[docs]class ProteinPropertyPredictorScorer(PropertyPredictorScorer): """Property Predictor Scorer for protein."""
[docs] def __init__( self, name: str, scoring_function: PropertyPredictor, target: Union[float, int], ) -> None: """Scoring function that calculates a generic score for a property in proteins. Args: name: name of the property to score. scoring_function: callable scoring function. target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]). """ if name not in AVAILABLE_PROTEINS_PROPERTY_PREDICTOR: raise ValueError(f"property {name} not available for proteins.") super().__init__(name=name, scoring_function=scoring_function, target=target)