#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from typing import List, Union
from rdkit import Chem
from .core import PropertyPredictor
from .molecules import AVAILABLE_MOLECULES_PROPERTY_PREDICTOR
from .proteins import AVAILABLE_PROTEINS_PROPERTY_PREDICTOR
from .scores import DistanceScorer
[docs]class PropertyPredictorScorer(DistanceScorer):
"""Property Predictor Scorer."""
[docs] def __init__(
self,
name: str,
scoring_function: PropertyPredictor,
target: Union[float, int],
) -> None:
"""Scoring function that calculates a generic score for a property.
Args:
name: name of the property to score. Needed for validation.
scoring_function: callable scoring function.
target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]).
"""
self.name = name
self.target = target
self.scoring_function = scoring_function
super().__init__()
[docs] def score(self, sample: str) -> float:
"""Generates a score for a given molecule or protein.
Args:
sample: molecule or protein.
Returns:
A score for the given molecule or protein.
"""
self.validate_input(sample=sample, property_name=self.name)
return self.get_distance(self.scoring_function(sample) - self.target)
[docs] def score_list(self, sample_list: List[str]) -> List[float]:
"""Generates a list of scores for a given molecule or protein list.
Args:
samples_list: A List of molecules or proteins.
Returns:
A List of scores
"""
scores = []
for sample in sample_list:
scores.append(self.score(sample))
return scores
[docs] def predictor(self, sample: str) -> Union[float, int]:
"""Generates a prediction for a given molecule or protein.
Args:
sample: molecule or protein.
Returns:
A score for the given SMILES
"""
self.validate_input(sample=sample, property_name=self.name)
return self.scoring_function(sample)
[docs]class MoleculePropertyPredictorScorer(PropertyPredictorScorer):
"""Property Predictor Scorer for molecules."""
[docs] def __init__(
self,
name: str,
scoring_function: PropertyPredictor,
target: Union[float, int],
) -> None:
"""Scoring function that calculates a generic score for a property in molecules.
Args:
name: name of the property to score.
scoring_function: callable scoring function.
target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]).
"""
if name not in AVAILABLE_MOLECULES_PROPERTY_PREDICTOR:
raise ValueError(f"property {name} not available for molecules.")
super().__init__(name=name, scoring_function=scoring_function, target=target)
[docs]class ProteinPropertyPredictorScorer(PropertyPredictorScorer):
"""Property Predictor Scorer for protein."""
[docs] def __init__(
self,
name: str,
scoring_function: PropertyPredictor,
target: Union[float, int],
) -> None:
"""Scoring function that calculates a generic score for a property in proteins.
Args:
name: name of the property to score.
scoring_function: callable scoring function.
target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]).
"""
if name not in AVAILABLE_PROTEINS_PROPERTY_PREDICTOR:
raise ValueError(f"property {name} not available for proteins.")
super().__init__(name=name, scoring_function=scoring_function, target=target)