#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from typing import Any, Dict, List
from .core import PropertyPredictor
from .crystals import CRYSTALS_PROPERTY_PREDICTOR_FACTORY
from .molecules import MOLECULE_PROPERTY_PREDICTOR_FACTORY
from .proteins import PROTEIN_PROPERTY_PREDICTOR_FACTORY
from .scorer import (
    MoleculePropertyPredictorScorer,
    PropertyPredictorScorer,
    ProteinPropertyPredictorScorer,
)
PROPERTY_PREDICTOR_FACTORY: Dict[str, Any] = {
    **CRYSTALS_PROPERTY_PREDICTOR_FACTORY,
    **MOLECULE_PROPERTY_PREDICTOR_FACTORY,
    **PROTEIN_PROPERTY_PREDICTOR_FACTORY,
}
AVAILABLE_PROPERTY_PREDICTORS = sorted(PROPERTY_PREDICTOR_FACTORY.keys())
SCORING_FACTORY_WITH_PROPERTY_PREDICTORS = {
    "property_predictor_scorer": PropertyPredictorScorer,
    "molecule_property_predictor_scorer": MoleculePropertyPredictorScorer,
    "protein_property_predictor_scorer": ProteinPropertyPredictorScorer,
}
AVAILABLE_SCORING_WITH_PROPERTY_PREDICTORS = sorted(
    SCORING_FACTORY_WITH_PROPERTY_PREDICTORS.keys()
)
[docs]class PropertyPredictorRegistry:
    """A registry for property predictors."""
[docs]    @staticmethod
    def get_property_predictor_parameters_schema(name: str) -> Dict[str, Any]:
        try:
            _, parameters_class = PROPERTY_PREDICTOR_FACTORY[name]
            return parameters_class.schema_json()
        except KeyError:
            raise ValueError(
                f"Property predictor name={name} not supported. Pick one from {AVAILABLE_PROPERTY_PREDICTORS}"
            ) 
[docs]    @staticmethod
    def get_property_predictor(
        name: str, parameters: Dict[str, Any] = {}
    ) -> PropertyPredictor:
        try:
            property_class, parameters_class = PROPERTY_PREDICTOR_FACTORY[name]
            return property_class(parameters_class(**parameters))
        except KeyError:
            raise ValueError(
                f"Property predictor name={name} not supported. Pick one from {AVAILABLE_PROPERTY_PREDICTORS}"
            ) 
[docs]    @staticmethod
    def get_property_predictor_scorer(
        property_name: str,
        scorer_name: str,
        target: float,
        parameters: Dict[str, Any] = {},
    ) -> PropertyPredictorScorer:
        """Get a property predictor scorer.
        Args:
            property_name: name of the property to score.
            scorer_name: name of the scorer to use.
            target: target score that will be used to get the distance to the score of a molecule or protein (not be confused with parameters["target"]).
            parameters: parameters for the scoring function.
        Returns:
            A property predictor scorer.
        """
        scoring_function = PropertyPredictorRegistry.get_property_predictor(
            name=property_name, parameters=parameters
        )
        if scorer_name not in SCORING_FACTORY_WITH_PROPERTY_PREDICTORS:
            raise ValueError(
                f"Scorer name={scorer_name} not supported. Pick one from {AVAILABLE_SCORING_WITH_PROPERTY_PREDICTORS}"
            )
        property_predictor_scorer = SCORING_FACTORY_WITH_PROPERTY_PREDICTORS[
            scorer_name
        ]
        return property_predictor_scorer(property_name, scoring_function, target) 
[docs]    @staticmethod
    def list_available() -> List[str]:
        return AVAILABLE_PROPERTY_PREDICTORS 
[docs]    @staticmethod
    def list_available_scorers() -> List[str]:
        return AVAILABLE_SCORING_WITH_PROPERTY_PREDICTORS