Source code for gt4sd.properties.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from enum import Enum
from typing import Any, Callable, Union

from pydantic import BaseModel, Field

PropertyValue = Union[float, int]


[docs]class DomainSubmodule(str, Enum): molecules: str = "molecules" properties: str = "properties" crystals: str = "crystals"
[docs]class PropertyPredictorParameters(BaseModel): """Abstract class for property computation.""" pass
# Base class for property predictors that use S3 artifacts
[docs]class S3Parameters(PropertyPredictorParameters): algorithm_type: str = "prediction" domain: DomainSubmodule = Field( ..., examples=["molecules"], description="Submodule of gt4sd.properties" ) algorithm_name: str = Field( ..., examples=["MCA"], description="Name of the algorithm" ) algorithm_version: str = Field( ..., examples=["v0"], description="Version of the algorithm" ) algorithm_application: str = Field(..., examples=["Tox21"])
[docs]class ApiTokenParameters(PropertyPredictorParameters): api_token: str = Field( ..., examples=["apk-c9db......"], description="The API token/key to access the service", )
[docs]class IpAdressParameters(PropertyPredictorParameters): host_ip: str = Field( ..., examples=["xx.xx.xxx.xxx"], description="The host IP address to access the service", )
[docs]class PropertyPredictor: """PropertyPredictor base class."""
[docs] def __init__( self, parameters: PropertyPredictorParameters = PropertyPredictorParameters() ) -> None: """Construct a PropertyPredictor using the related parameters. Args: parameters: parameters to configure the predictor. """ self.parameters = parameters
[docs] def __call__(self, sample: Any) -> PropertyValue: """Call the PropertyPredictor. Args: sample: a sample to use for predicting the property of interest. Returns: Property: Example: An example for predicting properties:: property_predictor = PropertyPredictor(parameters) value = property_predictor(sample) """ raise NotImplementedError
[docs]class CallablePropertyPredictor(PropertyPredictor): """Property predictor based on a callable."""
[docs] def __init__( self, callable_fn: Callable, parameters: PropertyPredictorParameters = PropertyPredictorParameters(), ) -> None: self.callable_fn = callable_fn super().__init__(parameters=parameters)
[docs] def __call__(self, sample: Any) -> PropertyValue: """Call the PropertyPredictor. Args: sample: a sample to use for predicting the property of interest. Returns: Property: Property predicted by the predictor. Example: An example for predicting properties:: property_predictor = CallablePropertyPredictor(callable_fn=lambda a: id(a), parameters) value = property_predictor(sample) """ return self.callable_fn(sample)
[docs]class ConfigurableCallablePropertyPredictor(CallablePropertyPredictor): """Property predictor based on a callable that is configured using the provided parameters."""
[docs] def __call__(self, sample: Any) -> PropertyValue: """Call the PropertyPredictor. Args: sample: a sample to use for predicting the property of interest. Returns: Property: Example: An example for predicting properties:: property_predictor = CallablePropertyPredictor(callable_fn=lambda a, b: id(a), parameters) value = property_predictor(sample) """ return self.callable_fn(sample, **self.parameters.dict())