#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from enum import Enum
from typing import Any, Callable, Union
from pydantic import BaseModel, Field
PropertyValue = Union[float, int]
[docs]class DomainSubmodule(str, Enum):
    molecules: str = "molecules"
    properties: str = "properties"
    crystals: str = "crystals" 
[docs]class PropertyPredictorParameters(BaseModel):
    """Abstract class for property computation."""
    pass 
# Base class for property predictors that use S3 artifacts
[docs]class S3Parameters(PropertyPredictorParameters):
    algorithm_type: str = "prediction"
    domain: DomainSubmodule = Field(
        ..., examples=["molecules"], description="Submodule of gt4sd.properties"
    )
    algorithm_name: str = Field(
        ..., examples=["MCA"], description="Name of the algorithm"
    )
    algorithm_version: str = Field(
        ..., examples=["v0"], description="Version of the algorithm"
    )
    algorithm_application: str = Field(..., examples=["Tox21"]) 
[docs]class ApiTokenParameters(PropertyPredictorParameters):
    api_token: str = Field(
        ...,
        examples=["apk-c9db......"],
        description="The API token/key to access the service",
    ) 
[docs]class IpAdressParameters(PropertyPredictorParameters):
    host_ip: str = Field(
        ...,
        examples=["xx.xx.xxx.xxx"],
        description="The host IP address to access the service",
    ) 
[docs]class PropertyPredictor:
    """PropertyPredictor base class."""
[docs]    def __init__(
        self, parameters: PropertyPredictorParameters = PropertyPredictorParameters()
    ) -> None:
        """Construct a PropertyPredictor using the related parameters.
        Args:
            parameters: parameters to configure the predictor.
        """
        self.parameters = parameters 
[docs]    def __call__(self, sample: Any) -> PropertyValue:
        """Call the PropertyPredictor.
        Args:
            sample: a sample to use for predicting the property of interest.
        Returns:
            Property:
        Example:
            An example for predicting properties::
                property_predictor = PropertyPredictor(parameters)
                value = property_predictor(sample)
        """
        raise NotImplementedError  
[docs]class CallablePropertyPredictor(PropertyPredictor):
    """Property predictor based on a callable."""
[docs]    def __init__(
        self,
        callable_fn: Callable,
        parameters: PropertyPredictorParameters = PropertyPredictorParameters(),
    ) -> None:
        self.callable_fn = callable_fn
        super().__init__(parameters=parameters) 
[docs]    def __call__(self, sample: Any) -> PropertyValue:
        """Call the PropertyPredictor.
        Args:
            sample: a sample to use for predicting the property of interest.
        Returns:
            Property: Property predicted by the predictor.
        Example:
            An example for predicting properties::
                property_predictor = CallablePropertyPredictor(callable_fn=lambda a: id(a), parameters)
                value = property_predictor(sample)
        """
        return self.callable_fn(sample)  
[docs]class ConfigurableCallablePropertyPredictor(CallablePropertyPredictor):
    """Property predictor based on a callable that is configured using the provided parameters."""
[docs]    def __call__(self, sample: Any) -> PropertyValue:
        """Call the PropertyPredictor.
        Args:
            sample: a sample to use for predicting the property of interest.
        Returns:
            Property:
        Example:
            An example for predicting properties::
                property_predictor = CallablePropertyPredictor(callable_fn=lambda a, b: id(a), parameters)
                value = property_predictor(sample)
        """
        return self.callable_fn(sample, **self.parameters.dict())