gt4sd.properties.scores.core module¶
Implementation of scorers.
Summary¶
Classes:
Functions:
calculating exponential for a given distance  | 
Reference¶
- distance_to_score(distance, beta)[source]¶
 calculating exponential for a given distance
- Parameters
 distance (
float) – A float.- Return type
 float- Returns
 An exponential score value for a given SMILES
- class DistanceScorer(beta=1e-08)[source]¶
 Bases:
ScoringFunction- __init__(beta=1e-08)[source]¶
 DistanceScorer is used to call a partial copy of distance_to_score function.
- Parameters
 beta (
float) – A float value used for getting an exponential score value
- get_distance(smile_distance)[source]¶
 Generates a partial copy of distance_to_score function
- Parameters
 smiles – SMILES.
- Return type
 float- Returns
 An exponential score value for a given SMILES
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- class TargetValueScorer(target, scoring_function)[source]¶
 Bases:
DistanceScorer- __init__(target, scoring_function)[source]¶
 Scoring function which is used to generate a score based on a taget and a scoring function.
- Parameters
 target (
float) – target score that will be used to get the distance to the score of the SMILESscoring_function (
Callable[[str],float]) – an instance of a scoring class
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Return type
 float- Returns
 A score for the given SMILES
- score_list(smiles_list)[source]¶
 Generates a list of scores for a given SMILES List
- Parameters
 smiles_list (
List[str]) – A List of SMILES.- Return type
 List[float]- Returns
 A List of scores
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- class CombinedScorer(scorer_list, weights=None)[source]¶
 Bases:
object- __init__(scorer_list, weights=None)[source]¶
 Scoring function which generates a combined score for a SMILES as per the given scoring functions.
- Parameters
 scorer_list (
List[Type[Any]]) – A list of the scoring functionsweights (
Optional[List[float],None]) – A list of weights
- _normalize_weights(weights=None)[source]¶
 It is used for normalizing weights.
- Parameters
 weights – A list of weights.
- Return type
 List[float]- Returns
 Sum of all the scores generated by the given scoring functions
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Returns
 Sum of all the scores generated by the given scoring functions
- score_list(smiles_list)[source]¶
 Generates a list of scores for a given SMILES List
- Parameters
 smiles_list (
List[str]) – A List of SMILES.- Return type
 List[float]- Returns
 A List of scores
- __dict__ = mappingproxy({'__module__': 'gt4sd.properties.scores.core', '__init__': <function CombinedScorer.__init__>, '_normalize_weights': <function CombinedScorer._normalize_weights>, 'score': <function CombinedScorer.score>, 'score_list': <function CombinedScorer.score_list>, '__dict__': <attribute '__dict__' of 'CombinedScorer' objects>, '__weakref__': <attribute '__weakref__' of 'CombinedScorer' objects>, '__doc__': None, '__annotations__': {}})¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- __weakref__¶
 list of weak references to the object (if defined)
- class RDKitDescriptorScorer(target, modifier='gaussian_modifier', descriptor='num_rotatable_bonds')[source]¶
 Bases:
TargetValueScorer- __init__(target, modifier='gaussian_modifier', descriptor='num_rotatable_bonds')[source]¶
 Scoring function wrapping RDKit descriptors.
- Parameters
 target (
float) – target score that will be used to get the distance to the score of the SMILESmodifier (
str) – score modifierdescriptor (
str) – molecular descriptors
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Return type
 float- Returns
 A score for the given SMILES
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- class TanimotoScorer(target, target_smile, fp_type='ECFP4', modifier='gaussian_modifier')[source]¶
 Bases:
TargetValueScorer- __init__(target, target_smile, fp_type='ECFP4', modifier='gaussian_modifier')[source]¶
 Scoring function that looks at the fingerprint similarity against a target molecule.
- Parameters
 target (
float) – target score that will be used to get the distance to the score of the SMILEStarget_smile (
str) – target molecule to compare similarityfp_type (
str) – fingerprint typemodifier (
str) – score modifier
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Return type
 float- Returns
 A score for the given SMILES
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- class IsomerScorer(target, target_smile)[source]¶
 Bases:
TargetValueScorer- __init__(target, target_smile)[source]¶
 Scoring function for closeness to a molecular formula.
- Parameters
 target (
float) – target score that will be used to get the distance to the score of the SMILEStarget_smile (
str) – targeted SMILES to compare closeness with
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Return type
 float- Returns
 A score for the given SMILES
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- class SMARTSScorer(target, target_smile, inverse=True)[source]¶
 Bases:
TargetValueScorer- __init__(target, target_smile, inverse=True)[source]¶
 Scoring function that looks at the fingerprint similarity against a target molecule.
- Parameters
 target (
float) – target score that will be used to get the distance to the score of the SMILEStarget_smile (
str) – The SMARTS string to matchinverse (
bool) – If True then SMARTS is desired else it is not desired in the molecules
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Return type
 float- Returns
 A score for the given SMILES
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶
 
- class QEDScorer(target)[source]¶
 Bases:
TargetValueScorer- __init__(target)[source]¶
 Scoring function that calculates the weighted sum of ADS mapped properties using QED module of rdkit
- Parameters
 target (
float) – target score that will be used to get the distance to the score of the SMILES
- score(smiles)[source]¶
 Generates a score for a given SMILES
- Parameters
 smiles (
str) – SMILES.- Return type
 float- Returns
 A score for the given SMILES
- __annotations__ = {}¶
 
- __doc__ = None¶
 
- __module__ = 'gt4sd.properties.scores.core'¶