gt4sd.frameworks.granular.ml.models.mlp_auto_encoder.core module¶
MLP autoencoder implementation.
Summary¶
Classes:
MlpAutoencoder - Multi Layer Perceptron autoencoder.  | 
Reference¶
- class MlpAutoEncoder(name, position, data, input_size_enc=256, hidden_size_enc=256, n_layers_enc=2, activation_enc='linear', dropout_enc=0.0, hidden_size_dec=256, n_layers_dec=2, activation_dec='linear', dropout_dec=0.0, output_size_dec=256, latent_size=196, loss_function='mse', **kwargs)[source]¶
 Bases:
GranularEncoderDecoderModelMlpAutoencoder - Multi Layer Perceptron autoencoder.
- __init__(name, position, data, input_size_enc=256, hidden_size_enc=256, n_layers_enc=2, activation_enc='linear', dropout_enc=0.0, hidden_size_dec=256, n_layers_dec=2, activation_dec='linear', dropout_dec=0.0, output_size_dec=256, latent_size=196, loss_function='mse', **kwargs)[source]¶
 Construct MlpAutoEncoder.
- Parameters
 name (
str) – model name.position (
int) – position of the model.data (
Dict[str,str]) – data name mappings.input_size_enc (
int) – encoder input size. Defaults to 256.hidden_size_enc (
int) – encoder hidden size. Defaults to 256.n_layers_enc (
int) – number of layers for the encoder. Defaults to 2.activation_enc (
str) – activation function for the encoder. Defaults to “linear”.dropout_enc (
float) – encoder dropout rate. Defaults to 0.0.hidden_size_dec (
int) – decoder hidden size. Defaults to 256.n_layers_dec (
int) – number of layers for the decoder. Defaults to 2.activation_dec (
str) – activation function for the decoder. Defaults to “linear”.dropout_dec (
float) – decoder dropout rate. Defaults to 0.0.output_size_dec (
int) – decoder output size. Defaults to 256.latent_size (
int) – size of the latent space. Defaults to 196.loss_function (
str) – loss function. Defaults to “mse”.
- Raises
 ValueError – in case the provided loss function is not supported.
- decode(z, *args, **kwargs)[source]¶
 Decode a latent space point.
- Parameters
 z (
Any) – latent point.- Return type
 Any- Returns
 decoded sample.
- encode(x, *args, **kwargs)[source]¶
 Encode a sample.
- Parameters
 x (
Any) – input sample.- Return type
 Any- Returns
 latent encoding.
- _run_step(x, *args, **kwargs)[source]¶
 Run a step in the model.
- Parameters
 x (
Any) – model input.- Return type
 Any- Returns
 model step output.
- step(input_data, target_data, device='cpu', current_epoch=0, *args, **kwargs)[source]¶
 Training step for the model.
- Parameters
 input_data (
Any) – input for the step.target_data (
Any) – target for the step.device (
str) – string representing the device to use. Defaults to “cpu”.current_epoch (
int) – current epoch. Defaults to 0.
- Return type
 Tuple[Any,Any,Any]- Returns
 a tuple containing the step output, the loss and the logs for the module.
- val_step(input_data, target_data, device='cpu', current_epoch=0, *args, **kwargs)[source]¶
 Validation step for the model.
- Parameters
 input_data (
Any) – input for the step.target_data (
Any) – target for the step.device (
str) – string representing the device to use. Defaults to “cpu”.current_epoch (
int) – current epoch. Defaults to 0.
- Return type
 Any- Returns
 a tuple containing the step output, the loss and the logs for the module.
- static add_model_specific_args(parent_parser, name, *args, **kwargs)[source]¶
 Adding to a parser model specific arguments.
- Parameters
 parent_parser (
ArgumentParser) – patent parser.name (
str) – model name.
- Return type
 ArgumentParser- Returns
 updated parser.
- __annotations__ = {}¶
 
- __doc__ = 'MlpAutoencoder - Multi Layer Perceptron autoencoder.'¶
 
- __module__ = 'gt4sd.frameworks.granular.ml.models.mlp_auto_encoder.core'¶