Source code for gt4sd.training_pipelines.paccmann.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""PaccMann training utilities."""

from dataclasses import dataclass, field
from typing import Any, Dict, Optional

from ..core import TrainingPipeline, TrainingPipelineArguments


[docs]class PaccMannTrainingPipeline(TrainingPipeline): """PyTorch lightining training pipelines."""
[docs] def train( # type: ignore self, training_args: Dict[str, Any], model_args: Dict[str, Any], dataset_args: Dict[str, Any], ) -> None: """Generic training function for PaccMann training. Args: training_args: training arguments passed to the configuration. model_args: model arguments passed to the configuration. dataset_args: dataset arguments passed to the configuration. Raises: NotImplementedError: the generic trainer does not implement the pipeline. """ raise NotImplementedError
[docs]@dataclass class PaccMannTrainingArguments(TrainingPipelineArguments): """Arguments related to PaccMann trainer.""" __name__ = "training_args" model_path: str = field( metadata={"help": "Path where the model artifacts are stored."} ) training_name: str = field(metadata={"help": "Name used to identify the training."}) checkpoint_path: Optional[str] = field( default=None, metadata={ "help": "Path to model checkpoint for weights initialization. Leave None if you want to train a model from scratch" }, ) epochs: int = field(default=50, metadata={"help": "Number of epochs."}) batch_size: int = field(default=256, metadata={"help": "Size of the batch."}) learning_rate: float = field( default=0.0005, metadata={"help": "Learning rate used in training."} ) optimizer: str = field( default="adam", metadata={"help": "Optimizer used during training."} ) log_interval: int = field( default=100, metadata={"help": "Number of steps between log intervals."} ) save_interval: int = field( default=1000, metadata={"help": "Number of steps between model save intervals."} ) eval_interval: int = field( default=500, metadata={"help": "Number of steps between evaluation intervals."} )
[docs]@dataclass class PaccMannDataArguments(TrainingPipelineArguments): """Arguments related to PaccMann data loading.""" __name__ = "dataset_args" train_smiles_filepath: str = field( metadata={"help": "Training file containing SMILES in .smi format."} ) test_smiles_filepath: str = field( metadata={"help": "Testing file containing SMILES in .smi format."} ) smiles_language_filepath: str = field( default="none", metadata={"help": "Optional SMILES language file."} ) add_start_stop_token: bool = field( default=True, metadata={"help": "Whether start and stop token should be added."} ) selfies: bool = field( default=True, metadata={"help": "Whether SELFIES representations are used."} ) num_workers: int = field( default=0, metadata={"help": "Number of workers used in data loading."} ) pin_memory: bool = field( default=False, metadata={"help": "Whether memory in the data loader is pinned."} ) augment_smiles: bool = field( default=False, metadata={"help": "Whether SMILES augumentation is used."} ) canonical: bool = field( default=False, metadata={"help": "Whether SMILES canonicalization is used."} ) kekulize: bool = field( default=False, metadata={"help": "Whether SMILES kekulization is used."} ) all_bonds_explicit: bool = field( default=False, metadata={"help": "Whether all bonds are explicit."} ) all_hs_explicit: bool = field( default=False, metadata={"help": "Whether all hydrogens are explicit."} ) remove_bonddir: bool = field( default=False, metadata={"help": "Remove bond directionality."} ) remove_chirality: bool = field( default=False, metadata={"help": "Remove chirality."} )
[docs]@dataclass class PaccMannSavingArguments(TrainingPipelineArguments): """Saving arguments related to PaccMann trainer.""" __name__ = "saving_args" model_path: str = field( metadata={"help": "Path where the model artifacts are stored."} ) training_name: str = field(metadata={"help": "Name used to identify the training."})