Source code for gt4sd.frameworks.granular.train.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""Train module implementation."""

import logging
from argparse import Namespace
from typing import Any, Dict

import sentencepiece as _sentencepiece
import torch as _torch
import tensorflow as _tensorflow
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger

from ..arg_parser.parser import parse_arguments_from_config
from ..dataloader.data_module import GranularDataModule
from ..dataloader.dataset import build_dataset_and_architecture
from ..ml.models import AUTOENCODER_ARCHITECTURES
from ..ml.module import GranularModule

# imports that have to be loaded before lightning to avoid segfaults
_sentencepiece
_tensorflow
_torch

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())


[docs]def train_granular(configuration: Dict[str, Any]) -> None: """Train a granular given a configuration. Args: configuration: a configuration dictionary. """ arguments = Namespace(**configuration) datasets = [] architecture_autoencoders = [] architecture_latent_models = [] for model in arguments.model_list: logger.info(f"dataset preparation for model={model}") hparams = configuration[model] model_type = hparams["type"].lower() dataset, architecture = build_dataset_and_architecture( hparams["name"], hparams["data_path"], hparams["data_file"], hparams["dataset_type"], hparams["type"], hparams, ) datasets.append(dataset) if model_type in AUTOENCODER_ARCHITECTURES: architecture_autoencoders.append(architecture) else: architecture_latent_models.append(architecture) dm = GranularDataModule( datasets, batch_size=getattr(arguments, "batch_size", 64), validation_split=getattr(arguments, "validation_split", None), validation_indices_file=getattr(arguments, "validation_indices_file", None), stratified_batch_file=getattr(arguments, "stratified_batch_file", None), stratified_value_name=getattr(arguments, "stratified_value_name", None), num_workers=getattr(arguments, "num_workers", 1), ) dm.prepare_data() module = GranularModule( architecture_autoencoders=architecture_autoencoders, architecture_latent_models=architecture_latent_models, lr=getattr(arguments, "lr", 0.0001), test_output_path=getattr(arguments, "test_output_path", "./test"), ) tensorboard_logger = TensorBoardLogger( "logs", name=getattr(arguments, "basename", "default") ) checkpoint_callback = ModelCheckpoint( every_n_epochs=getattr(arguments, "checkpoint_every_n_val_epochs", 5), save_top_k=-1, ) trainer = pl.Trainer.from_argparse_args( arguments, profiler="simple", logger=tensorboard_logger, auto_lr_find=True, log_every_n_steps=getattr(arguments, "trainer_log_every_n_steps", 50), callbacks=[checkpoint_callback], max_epochs=getattr(arguments, "epoch", 1), ) trainer.fit(module, dm)
[docs]def train_granular_main() -> None: """Train a granular module parsing arguments from config and standard input.""" train_granular(configuration=vars(parse_arguments_from_config()))