Source code for gt4sd.frameworks.granular.arg_parser.parser

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import argparse
import configparser
from typing import Any, Dict, Optional

import sentencepiece as _sentencepiece
import torch as _torch
import tensorflow as _tensorflow
from pytorch_lightning import Trainer

from ..ml.models import ARCHITECTURE_FACTORY
from .utils import convert_string_to_class

# imports that have to be loaded before lightning to avoid segfaults
_sentencepiece
_tensorflow
_torch


[docs]def parse_arguments_from_config(conf_file: Optional[str] = None) -> argparse.Namespace: """Parse arguments from configuration file. Args: conf_file: configuration file. Defaults to None, a.k.a. us a default configuration in ./config/config.ini. Returns: the parsed arguments. """ parser = argparse.ArgumentParser() # open config.ini file, either from parser or default file parser.add_argument( "--conf_file", type=str, help=("config file for the defaults value"), default="./config/config.ini", ) # Read config file args, remaining_argv = parser.parse_known_args() config = configparser.ConfigParser() if conf_file: config.read(conf_file) else: config.read(args.conf_file) # classes that are not model name general_config_classes = ["general", "trainer", "default"] # adding a list of all model name into the args result: Dict[str, Any] = dict() result["model_list"] = [ i for i in list(config.keys()) if i.lower() not in general_config_classes ] for key in [*config.keys()]: # go trough all models parameter, replace the parsed ones from the the config files ones if key.lower() not in general_config_classes: model_type = config[key]["type"] params_from_configfile = dict(config[key]) model = ARCHITECTURE_FACTORY[model_type.lower()] parser = model.add_model_specific_args(parser, key) args, _ = parser.parse_known_args() args_dictionary = vars(args) params_from_configfile["name"] = key for i in params_from_configfile: params_from_configfile[i] = convert_string_to_class( params_from_configfile[i] ) params_from_configfile.update( { k[: -len(key) - 1]: v for k, v in args_dictionary.items() if v is not None and k.endswith("_" + key) } ) result[key] = params_from_configfile elif key.lower() == "trainer" or key.lower() == "general": params_from_configfile = dict(config[key]) for i in params_from_configfile: params_from_configfile[i] = convert_string_to_class( params_from_configfile[i] ) result.update(params_from_configfile) # parser Pytorch Trainer arguments parser = Trainer.add_argparse_args(parser) # adding basename as the name of the run parser.add_argument("--basename", type=str) parser.add_argument("--batch_size", type=int) parser.add_argument("--num_workers", type=int) parser.add_argument("--lr", type=float) parser.add_argument("--validation_split", type=float, default=None) parser.add_argument("--validation_indices_file", type=str) args_dictionary = vars(parser.parse_args(remaining_argv)) result.update({k: v for k, v in args_dictionary.items() if v is not None}) result_namespace = argparse.Namespace(**result) return result_namespace