#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""Train module implementation."""
import logging
from argparse import Namespace
from typing import Any, Dict
import sentencepiece as _sentencepiece
import torch as _torch
import tensorflow as _tensorflow
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from ..arg_parser.parser import parse_arguments_from_config
# from ..dataloader import build_dataset
from ..dataloader.data_module import GFlowNetDataModule
from ..dataloader.dataset import GFlowNetDataset, GFlowNetTask
# from ..envs import build_env_context
from ..envs.graph_building_env import GraphBuildingEnv, GraphBuildingEnvContext
from ..loss import ALGORITHM_FACTORY
from ..ml.models import MODEL_FACTORY
from ..ml.module import GFlowNetModule
# from ..train import build_task
# imports that have to be loaded before lightning to avoid segfaults
_sentencepiece
_tensorflow
_torch
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
[docs]def train_gflownet(
configuration: Dict[str, Any],
dataset: GFlowNetDataset,
environment: GraphBuildingEnv,
context: GraphBuildingEnvContext,
task: GFlowNetTask,
) -> None:
"""Train a gflownet given a configuration, a dataset and a task.
The default enviroment and context are compatible with small molecules.
Args:
configuration: a configuration dictionary.
dataset: a dataset compatible with lightning.
environment: an environment specifying the state space.
context: an environment context specifying how to combine states.
task: a task specifying the reward structure.
"""
arguments = Namespace(**configuration)
if arguments.algorithm in ALGORITHM_FACTORY:
algorithm = ALGORITHM_FACTORY[getattr(arguments, "algorithm")](
configuration=configuration,
environment=environment,
context=context,
)
else:
raise ValueError(f"Algorithm {arguments.algorithm} not supported.")
if arguments.model in MODEL_FACTORY:
model = MODEL_FACTORY[getattr(arguments, "model")](
configuration=configuration,
context=context,
)
else:
raise ValueError(f"Model {arguments.model} not supported.")
dm = GFlowNetDataModule(
configuration=configuration,
dataset=dataset,
environment=environment,
context=context,
task=task,
algorithm=algorithm,
model=model,
)
dm.prepare_data()
module = GFlowNetModule(
configuration=configuration,
dataset=dataset,
environment=environment,
context=context,
task=task,
algorithm=algorithm,
model=model,
)
tensorboard_logger = TensorBoardLogger(
"logs", name=getattr(arguments, "basename", "default")
)
checkpoint_callback = ModelCheckpoint(
save_top_k=-1,
)
trainer = pl.Trainer.from_argparse_args(
arguments,
profiler="simple",
logger=tensorboard_logger,
auto_lr_find=True,
log_every_n_steps=getattr(arguments, "trainer_log_every_n_steps", 50),
callbacks=[checkpoint_callback],
max_epochs=getattr(arguments, "epoch", 10),
check_val_every_n_epoch=getattr(arguments, "checkpoint_every_n_val_epochs", 5),
fast_dev_run=getattr(arguments, "development_mode", False),
strategy=getattr(arguments, "strategy", "ddp"),
)
trainer.fit(module, dm)
[docs]def train_gflownet_main(
configuration: Dict[str, Any],
dataset: GFlowNetDataset,
environment: GraphBuildingEnv,
context: GraphBuildingEnvContext,
task: GFlowNetTask,
) -> None:
"""Train a gflownet module parsing arguments from config and standard input."""
# add user configuration
configuration.update(vars(parse_arguments_from_config()))
# train gflownet
train_gflownet(
configuration=configuration,
dataset=dataset,
environment=environment,
context=context,
task=task,
)