Source code for gt4sd.frameworks.gflownet.arg_parser.parser

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import argparse
import configparser
from typing import Any, Dict, Optional

import sentencepiece as _sentencepiece
import torch as _torch
import tensorflow as _tensorflow
import numpy as np
from pytorch_lightning import Trainer

from ..ml.models import MODEL_FACTORY
from .utils import convert_string_to_class

# imports that have to be loaded before lightning to avoid segfaults
_sentencepiece
_tensorflow
_torch


[docs]def parse_arguments_from_config(conf_file: Optional[str] = None) -> argparse.Namespace: """Parse arguments from configuration file. Args: conf_file: configuration file. Defaults to None, a.k.a. us a default configuration in ./config/config.ini. Returns: the parsed arguments. """ parser = argparse.ArgumentParser() # open config.ini file, either from parser or default file parser.add_argument( "--conf_file", type=str, help=("config file for the defaults value"), default="./config/config.ini", ) # Read config file args, remaining_argv = parser.parse_known_args() config = configparser.ConfigParser() if conf_file: config.read(conf_file) else: config.read(args.conf_file) # classes that are not model name general_config_classes = ["general", "trainer", "default"] # adding a list of all model name into the args result: Dict[str, Any] = dict() result["model_list"] = [ i for i in list(config.keys()) if i.lower() not in general_config_classes ] for key in [*config.keys()]: # go trough all models parameter, replace the parsed ones from the the config files ones if key.lower() not in general_config_classes: model_type = config[key]["type"] params_from_configfile = dict(config[key]) model = MODEL_FACTORY[model_type.lower()] parser = model.add_model_specific_args(parser, key) args, _ = parser.parse_known_args() args_dictionary = vars(args) params_from_configfile["name"] = key for i in params_from_configfile: params_from_configfile[i] = convert_string_to_class( params_from_configfile[i] ) params_from_configfile.update( { k[: -len(key) - 1]: v for k, v in args_dictionary.items() if v is not None and k.endswith("_" + key) } ) result[key] = params_from_configfile elif key.lower() == "trainer" or key.lower() == "general": params_from_configfile = dict(config[key]) for i in params_from_configfile: params_from_configfile[i] = convert_string_to_class( params_from_configfile[i] ) result.update(params_from_configfile) # parser Pytorch Trainer arguments parser = Trainer.add_argparse_args(parser) # parse the arguments parser.add_argument("--algorithm", type=str, default="trajectory_balance") parser.add_argument("--context", type=str, default=None) parser.add_argument("--dataset", type=str, default="qm9") parser.add_argument("--dataset_path", type=str, default="./data/qm9.h5") parser.add_argument("--environment", type=str, default=None) parser.add_argument("--model", type=str, default="graph_transformer_gfn") parser.add_argument("--sampling_model", type=str, default="graph_transformer_gfn") parser.add_argument("--task", type=str, default="qm9") # adding basename as the name of the run parser.add_argument("--epoch", type=int) parser.add_argument("--basename", type=str) parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--num_workers", type=int, default=0) parser.add_argument("--validation_split", type=float) parser.add_argument("--validation_indices_file", type=str) parser.add_argument("--stratified_batch_file", type=str) parser.add_argument("--stratified_value_name", type=str) parser.add_argument("--checkpoint_every_n_val_epochs", type=str) parser.add_argument("--trainer_log_every_n_steps", type=str) parser.add_argument("--trainer_flush_logs_every_n_steps", type=str) parser.add_argument("--test_output_path", type=str, default="./test") parser.add_argument("--log_dir", type=str, default="./log/") parser.add_argument("--num_training_steps", type=int, default=1000) parser.add_argument("--validate_every", type=int, default=1000) parser.add_argument("--seed", type=int, default=142857) parser.add_argument("--device", type=str, default="cpu") # arguments specific for gflownet parser.add_argument("--bootstrap_own_reward", type=bool, default=False) parser.add_argument("--learning_rate", type=float, default=1e-4) parser.add_argument("--global_batch_size", type=int, default=16) parser.add_argument("--num_emb", type=int, default=128) parser.add_argument("--num_layers", type=int, default=4) parser.add_argument("--tb_epsilon", type=float, default=1e-10) parser.add_argument("--illegal_action_logreward", type=float, default=-50) parser.add_argument("--reward_loss_multiplier", type=float, default=1) parser.add_argument("--temperature_sample_dist", type=str, default="uniform") parser.add_argument("--temperature_dist_params", type=str, default="(.5, 32)") parser.add_argument("--weight_decay", type=float, default=1e-8) parser.add_argument("--num_data_loader_workers", type=float, default=8) parser.add_argument("--momentum", type=float, default=0.9) parser.add_argument("--adam_eps", type=float, default=1e-8) parser.add_argument("--lr_decay", type=int, default=20000) parser.add_argument("--z_lr_decay", type=int, default=20000) parser.add_argument("--clip_grad_type", type=str, default="norm") parser.add_argument("--clip_grad_param", type=int, default=10) parser.add_argument("--random_action_prob", type=float, default=0.001) parser.add_argument("--sampling_tau", type=float, default=0.0) parser.add_argument("--max_nodes", type=int, default=9) parser.add_argument("--num_offline", type=int, default=10) parser.add_argument("--sampling_iterator", type=bool, default=True) parser.add_argument("--ratio", type=float, default=0.9) parser.add_argument("--strategy", type=str, default="ddp") parser.add_argument("--development_mode", type=bool, default=False) args_dictionary = vars(parser.parse_args(remaining_argv)) result.update({k: v for k, v in args_dictionary.items() if v is not None}) # add random number generator from seed result["rng"] = np.random.default_rng(result["seed"]) result_namespace = argparse.Namespace(**result) return result_namespace