#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import argparse
import configparser
from typing import Any, Dict, Optional
import sentencepiece as _sentencepiece
import torch as _torch
import tensorflow as _tensorflow
import numpy as np
from pytorch_lightning import Trainer
from ..ml.models import MODEL_FACTORY
from .utils import convert_string_to_class
# imports that have to be loaded before lightning to avoid segfaults
_sentencepiece
_tensorflow
_torch
[docs]def parse_arguments_from_config(conf_file: Optional[str] = None) -> argparse.Namespace:
"""Parse arguments from configuration file.
Args:
conf_file: configuration file. Defaults to None, a.k.a. us a default configuration
in ./config/config.ini.
Returns:
the parsed arguments.
"""
parser = argparse.ArgumentParser()
# open config.ini file, either from parser or default file
parser.add_argument(
"--conf_file",
type=str,
help=("config file for the defaults value"),
default="./config/config.ini",
)
# Read config file
args, remaining_argv = parser.parse_known_args()
config = configparser.ConfigParser()
if conf_file:
config.read(conf_file)
else:
config.read(args.conf_file)
# classes that are not model name
general_config_classes = ["general", "trainer", "default"]
# adding a list of all model name into the args
result: Dict[str, Any] = dict()
result["model_list"] = [
i for i in list(config.keys()) if i.lower() not in general_config_classes
]
for key in [*config.keys()]:
# go trough all models parameter, replace the parsed ones from the the config files ones
if key.lower() not in general_config_classes:
model_type = config[key]["type"]
params_from_configfile = dict(config[key])
model = MODEL_FACTORY[model_type.lower()]
parser = model.add_model_specific_args(parser, key)
args, _ = parser.parse_known_args()
args_dictionary = vars(args)
params_from_configfile["name"] = key
for i in params_from_configfile:
params_from_configfile[i] = convert_string_to_class(
params_from_configfile[i]
)
params_from_configfile.update(
{
k[: -len(key) - 1]: v
for k, v in args_dictionary.items()
if v is not None and k.endswith("_" + key)
}
)
result[key] = params_from_configfile
elif key.lower() == "trainer" or key.lower() == "general":
params_from_configfile = dict(config[key])
for i in params_from_configfile:
params_from_configfile[i] = convert_string_to_class(
params_from_configfile[i]
)
result.update(params_from_configfile)
# parser Pytorch Trainer arguments
parser = Trainer.add_argparse_args(parser)
# parse the arguments
parser.add_argument("--algorithm", type=str, default="trajectory_balance")
parser.add_argument("--context", type=str, default=None)
parser.add_argument("--dataset", type=str, default="qm9")
parser.add_argument("--dataset_path", type=str, default="./data/qm9.h5")
parser.add_argument("--environment", type=str, default=None)
parser.add_argument("--model", type=str, default="graph_transformer_gfn")
parser.add_argument("--sampling_model", type=str, default="graph_transformer_gfn")
parser.add_argument("--task", type=str, default="qm9")
# adding basename as the name of the run
parser.add_argument("--epoch", type=int)
parser.add_argument("--basename", type=str)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--validation_split", type=float)
parser.add_argument("--validation_indices_file", type=str)
parser.add_argument("--stratified_batch_file", type=str)
parser.add_argument("--stratified_value_name", type=str)
parser.add_argument("--checkpoint_every_n_val_epochs", type=str)
parser.add_argument("--trainer_log_every_n_steps", type=str)
parser.add_argument("--trainer_flush_logs_every_n_steps", type=str)
parser.add_argument("--test_output_path", type=str, default="./test")
parser.add_argument("--log_dir", type=str, default="./log/")
parser.add_argument("--num_training_steps", type=int, default=1000)
parser.add_argument("--validate_every", type=int, default=1000)
parser.add_argument("--seed", type=int, default=142857)
parser.add_argument("--device", type=str, default="cpu")
# arguments specific for gflownet
parser.add_argument("--bootstrap_own_reward", type=bool, default=False)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--global_batch_size", type=int, default=16)
parser.add_argument("--num_emb", type=int, default=128)
parser.add_argument("--num_layers", type=int, default=4)
parser.add_argument("--tb_epsilon", type=float, default=1e-10)
parser.add_argument("--illegal_action_logreward", type=float, default=-50)
parser.add_argument("--reward_loss_multiplier", type=float, default=1)
parser.add_argument("--temperature_sample_dist", type=str, default="uniform")
parser.add_argument("--temperature_dist_params", type=str, default="(.5, 32)")
parser.add_argument("--weight_decay", type=float, default=1e-8)
parser.add_argument("--num_data_loader_workers", type=float, default=8)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--adam_eps", type=float, default=1e-8)
parser.add_argument("--lr_decay", type=int, default=20000)
parser.add_argument("--z_lr_decay", type=int, default=20000)
parser.add_argument("--clip_grad_type", type=str, default="norm")
parser.add_argument("--clip_grad_param", type=int, default=10)
parser.add_argument("--random_action_prob", type=float, default=0.001)
parser.add_argument("--sampling_tau", type=float, default=0.0)
parser.add_argument("--max_nodes", type=int, default=9)
parser.add_argument("--num_offline", type=int, default=10)
parser.add_argument("--sampling_iterator", type=bool, default=True)
parser.add_argument("--ratio", type=float, default=0.9)
parser.add_argument("--strategy", type=str, default="ddp")
parser.add_argument("--development_mode", type=bool, default=False)
args_dictionary = vars(parser.parse_args(remaining_argv))
result.update({k: v for k, v in args_dictionary.items() if v is not None})
# add random number generator from seed
result["rng"] = np.random.default_rng(result["seed"])
result_namespace = argparse.Namespace(**result)
return result_namespace