Source code for gt4sd.algorithms.generation.torchdrug.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""Torchdrug generation algorithm."""

import logging
import os
from typing import ClassVar, Dict, Optional, TypeVar

from ....training_pipelines.core import TrainingPipelineArguments
from ....training_pipelines.torchdrug.core import TorchDrugSavingArguments
from ...core import AlgorithmConfiguration, GeneratorAlgorithm, Untargeted
from ...registry import ApplicationsRegistry
from .implementation import GAFGenerator, GCPNGenerator, Generator

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

T = type(None)
S = TypeVar("S", bound=str)


[docs]class TorchDrugGenerator(GeneratorAlgorithm[S, T]):
[docs] def __init__( self, configuration: AlgorithmConfiguration, target: Optional[T] = None ): """TorchDrug generation algorithm. Args: configuration: domain and application specification, defining types and validations. Currently supported algorithm versions are: "zinc250k_v0", "qed_v0" and "plogp_v0". target: unused since it is not a conditional generator. Example: An example for using a generative algorithm from TorchDrug: configuration = TorchDrugGCPN(algorithm_version="qed_v0") algorithm = TorchDrugGenerator(configuration=configuration) items = list(algorithm.sample(1)) print(items) """ configuration = self.validate_configuration(configuration) super().__init__( configuration=configuration, target=None, # type:ignore )
[docs] def get_generator( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ) -> Untargeted: """Get the function to sample batches. Args: configuration: helps to set up the application. target: context or condition for the generation. Unused in the algorithm. Returns: callable generating a batch of items. """ logger.info("ensure artifacts for the application are present.") self.local_artifacts = configuration.ensure_artifacts() implementation: Generator = configuration.get_conditional_generator( # type: ignore self.local_artifacts ) return implementation.sample
[docs] def validate_configuration( self, configuration: AlgorithmConfiguration ) -> AlgorithmConfiguration: assert isinstance(configuration, AlgorithmConfiguration) return configuration
[docs]@ApplicationsRegistry.register_algorithm_application(TorchDrugGenerator) class TorchDrugGCPN(AlgorithmConfiguration[str, None]): """ Interface for TorchDrug Graph-convolutional policy network (GCPN) algorithm. Currently supported algorithm versions are "zinc250k_v0", "qed_v0" and "plogp_v0". """ algorithm_type: ClassVar[str] = "generation" domain: ClassVar[str] = "materials" algorithm_version: str = "zinc250k_v0"
[docs] def get_conditional_generator(self, resources_path: str) -> GCPNGenerator: """Instantiate the actual generator implementation. Args: resources_path: local path to model files. Returns: instance with :meth:`sample<gt4sd.algorithms.generation.torchdrug.implementation.GCPNGenerator.sample>` method for generation. """ self.generator = GCPNGenerator(resources_path=resources_path) return self.generator
[docs] @classmethod def get_filepath_mappings_for_training_pipeline_arguments( cls, training_pipeline_arguments: TrainingPipelineArguments ) -> Dict[str, str]: """Get filepath mappings for the given training pipeline arguments. Args: training_pipeline_arguments: training pipeline arguments. Returns: a mapping between artifacts' files and training pipeline's output files. """ if isinstance(training_pipeline_arguments, TorchDrugSavingArguments): task_name = ( f"task={training_pipeline_arguments.task}_" if training_pipeline_arguments.task else "" ) data_name = "data=" + ( training_pipeline_arguments.dataset_name + "_" + training_pipeline_arguments.file_path.split(os.sep)[-1].split(".")[0] if training_pipeline_arguments.dataset_name == "custom" else training_pipeline_arguments.dataset_name ) epochs = training_pipeline_arguments.epochs return { "weights.pkl": os.path.join( training_pipeline_arguments.model_path, training_pipeline_arguments.training_name, f"gcpn_data={data_name}_{task_name}epoch={epochs}.pkl", ) } else: return super().get_filepath_mappings_for_training_pipeline_arguments( training_pipeline_arguments )
[docs]@ApplicationsRegistry.register_algorithm_application(TorchDrugGenerator) class TorchDrugGraphAF(AlgorithmConfiguration[str, None]): """ Interface for TorchDrug flow-based autoregressive graph algorithm (GraphAF). Currently supported algorithm versions are "zinc250k_v0", "qed_v0" and "plogp_v0". """ algorithm_type: ClassVar[str] = "generation" domain: ClassVar[str] = "materials" algorithm_version: str = "zinc250k_v0"
[docs] def get_conditional_generator(self, resources_path: str) -> GAFGenerator: """Instantiate the actual generator implementation. Args: resources_path: local path to model files. Returns: instance with :meth:`samples<gt4sd.algorithms.generation.torchdrug.implementation.GAFGenerator.sample>` method for generation. """ self.generator = GAFGenerator(resources_path=resources_path) return self.generator
[docs] @classmethod def get_filepath_mappings_for_training_pipeline_arguments( cls, training_pipeline_arguments: TrainingPipelineArguments ) -> Dict[str, str]: """Get filepath mappings for the given training pipeline arguments. Args: training_pipeline_arguments: training pipeline arguments. Returns: a mapping between artifacts' files and training pipeline's output files. """ if isinstance(training_pipeline_arguments, TorchDrugSavingArguments): task_name = ( f"task={training_pipeline_arguments.task}_" if training_pipeline_arguments.task else "" ) data_name = "data=" + ( training_pipeline_arguments.dataset_name + "_" + training_pipeline_arguments.file_path.split(os.sep)[-1].split(".")[0] if training_pipeline_arguments.dataset_name == "custom" else training_pipeline_arguments.dataset_name ) epochs = training_pipeline_arguments.epochs return { "weights.pkl": os.path.join( training_pipeline_arguments.model_path, training_pipeline_arguments.training_name, f"graphaf_data={data_name}_{task_name}epoch={epochs}.pkl", ) } else: return super().get_filepath_mappings_for_training_pipeline_arguments( training_pipeline_arguments )