Source code for gt4sd.algorithms.generation.polymer_blocks.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""PaccMann vanilla generator trained on polymer building blocks (catalysts/monomers)."""

import logging
import os
from dataclasses import field
from typing import ClassVar, Dict, Optional, TypeVar

from ....domains.materials import SMILES, MoleculeFormat, validate_molecules
from ....exceptions import InvalidItem
from ....training_pipelines.core import TrainingPipelineArguments
from ....training_pipelines.paccmann.core import PaccMannSavingArguments
from ...core import AlgorithmConfiguration, GeneratorAlgorithm, Untargeted
from ...registry import ApplicationsRegistry
from .implementation import Generator

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

T = type(None)
S = TypeVar("S", bound=SMILES)


[docs]class PolymerBlocks(GeneratorAlgorithm[S, T]):
[docs] def __init__( self, configuration: AlgorithmConfiguration, target: Optional[T] = None ): """Polymer blocks generation. Args: configuration: domain and application specification, defining types and validations. target: unused since it is not a conditional generator. Example: An example for generating small molecules (SMILES) that resembles monomers/catalysts for polymer synthesis:: configuration = PolymerBlocksGenerator() polymer_blocks = PolymerBlocks(configuration=configuration) items = list(polymer_blocks.sample(10)) print(items) """ configuration = self.validate_configuration(configuration) # TODO there might also be a validation/check on the target input super().__init__( configuration=configuration, target=None, # type:ignore )
[docs] def get_generator( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ) -> Untargeted: """Get the function to sample batches via the Generator. Args: configuration: helps to set up the application. target: context or condition for the generation. Unused in the algorithm. Returns: callable generating a batch of items. """ logger.info("ensure artifacts for the application are present.") self.local_artifacts = configuration.ensure_artifacts() implementation: Generator = configuration.get_conditional_generator( # type: ignore self.local_artifacts ) return implementation.sample
[docs] def validate_configuration( self, configuration: AlgorithmConfiguration ) -> AlgorithmConfiguration: # TODO raise InvalidAlgorithmConfiguration assert isinstance(configuration, AlgorithmConfiguration) return configuration
[docs]@ApplicationsRegistry.register_algorithm_application(PolymerBlocks) class PolymerBlocksGenerator(AlgorithmConfiguration[SMILES, None]): """Configuration to generate subunits of polymers.""" algorithm_type: ClassVar[str] = "generation" domain: ClassVar[str] = "materials" algorithm_version: str = "v0" batch_size: int = field( default=32, metadata=dict(description="Batch size used for the generative model sampling."), ) generated_length: int = field( default=100, metadata=dict( description="Maximum length in tokens of the generated molcules (relates to the SMILES length)." ), )
[docs] def get_target_description(self) -> Optional[Dict[str, str]]: """Get description of the target for generation. Returns: target description, returns None in case no target is used. """ return None
[docs] def get_conditional_generator(self, resources_path: str) -> Generator: return Generator( resources_path=resources_path, generated_length=self.generated_length, batch_size=self.batch_size, )
[docs] def validate_item(self, item: str) -> SMILES: ( molecules, _, ) = validate_molecules([item], MoleculeFormat.smiles) if molecules[0] is None: raise InvalidItem( title="InvalidSMILES", detail=f'rdkit.Chem.MolFromSmiles returned None for "{item}"', ) return SMILES(item)
[docs] @classmethod def get_filepath_mappings_for_training_pipeline_arguments( cls, training_pipeline_arguments: TrainingPipelineArguments ) -> Dict[str, str]: """Ger filepath mappings for the given training pipeline arguments. Args: training_pipeline_arguments: training pipeline arguments. Returns: a mapping between artifacts' files and training pipeline's output files. """ if isinstance(training_pipeline_arguments, PaccMannSavingArguments): return { "smiles_language.pkl": os.path.join( training_pipeline_arguments.model_path, f"{training_pipeline_arguments.training_name}.lang", ), "params.json": os.path.join( training_pipeline_arguments.model_path, training_pipeline_arguments.training_name, "model_params.json", ), "weights.pt": os.path.join( training_pipeline_arguments.model_path, training_pipeline_arguments.training_name, "weights", "best_rec.pt", ), } else: return super().get_filepath_mappings_for_training_pipeline_arguments( training_pipeline_arguments )