Source code for gt4sd.algorithms.generation.moler.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""MoLeR Algorithm.

MoLeR generation algorithm.
"""

import logging
from dataclasses import field
from typing import Any, ClassVar, Dict, Optional, TypeVar

from ....domains.materials import SMILES, MoleculeFormat, validate_molecules
from ....exceptions import InvalidItem
from ...core import AlgorithmConfiguration, GeneratorAlgorithm, Untargeted
from ...registry import ApplicationsRegistry
from .implementation import MoLeRGenerator

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

T = type(None)
S = TypeVar("S", bound=SMILES)


[docs]class MoLeR(GeneratorAlgorithm[S, T]): """MoLeR Algorithm."""
[docs] def __init__( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T] = None, ): """Instantiate MoLeR ready to generate items. Args: configuration: domain and application specification defining parameters, types and validations. target: a target for which to generate items. Example: An example for generating small molecules (SMILES) with the default configuration: configuration = MoLeRDefaultGenerator() MoLeR = MoLeR(configuration=configuration, target=target) items = list(MoLeR.sample(10)) print(items) """ configuration = self.validate_configuration(configuration) # TODO there might also be a validation/check on the target input super().__init__( configuration=configuration, # type:ignore target=target, # type:ignore )
[docs] def get_generator( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ) -> Untargeted: """Get the function to sample batches via the MoLeRGenerator. Args: configuration: helps to set up the application. target: context or condition for the generation. Unused in the algorithm. Returns: callable generating a batch of items. """ logger.info("ensure artifacts for the application are present.") self.local_artifacts = configuration.ensure_artifacts() implementation: MoLeRGenerator = configuration.get_conditional_generator( # type: ignore self.local_artifacts ) return implementation.generate
[docs] def validate_configuration( self, configuration: AlgorithmConfiguration[S, T] ) -> AlgorithmConfiguration[S, T]: # TODO raise InvalidAlgorithmConfiguration assert isinstance(configuration, AlgorithmConfiguration) return configuration
[docs]@ApplicationsRegistry.register_algorithm_application(MoLeR) class MoLeRDefaultGenerator(AlgorithmConfiguration[SMILES, Any]): """Configuration to generate compounds using default parameters of MoLeR.""" algorithm_type: ClassVar[str] = "generation" domain: ClassVar[str] = "materials" algorithm_version: str = "v0" scaffolds: str = field( default="", metadata=dict( description="Scaffolds as '.'-separated SMILES. If empty, no scaffolds are used." ), ) num_samples: int = field( default=32, metadata=dict(description="Number of molecules to sample per call."), ) beam_size: int = field( default=1, metadata=dict(description="Beam size to use during decoding."), ) seed: int = field( default=0, metadata=dict(description="Seed used for random number generation."), ) num_workers: int = field( default=6, metadata=dict(description="Number of workers used for generation."), ) seed_smiles: str = field( default="", metadata=dict( description="Dot-separated SMILES used to initialize the encoder. If empty, random codes are used." ), ) sigma: float = field( default=0.0, metadata=dict( description="Variance of Gaussian noise being added to latent code." ), )
[docs] def get_target_description(self) -> Optional[Dict[str, str]]: """Get description of the target for generation. Returns: target description, returns None in case no target is used. """ return None
[docs] def get_conditional_generator(self, resources_path: str) -> MoLeRGenerator: """Instantiate the actual generator implementation. Args: resources_path: local path to model files. Returns: instance with :meth:`generate<gt4sd.algorithms.generation.MoLeR.implementation.MoLeRGenerator.generate>` for generation. """ return MoLeRGenerator( resources_path=resources_path, scaffolds=self.scaffolds, num_samples=self.num_samples, beam_size=self.beam_size, seed=self.seed, num_workers=self.num_workers, seed_smiles=self.seed_smiles, sigma=self.sigma, )
[docs] def validate_item(self, item: str) -> SMILES: """Check that item is a valid SMILES. Args: item: a generated item that is possibly not valid. Raises: InvalidItem: in case the item can not be validated. Returns: the validated SMILES. """ ( molecules, _, ) = validate_molecules([item], MoleculeFormat.smiles) if molecules[0] is None: raise InvalidItem( title="InvalidSMILES", detail=f'rdkit.Chem.MolFromSmiles returned None for "{item}"', ) return SMILES(item)