Source code for gt4sd.algorithms.generation.diffusion.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""HuggingFace Diffusers generation algorithm. Code and models adapted from https://github.com/huggingface/diffusers."""

import logging
from dataclasses import field
from typing import Any, ClassVar, Dict, Optional, Set, TypeVar, Union

from ...core import (
    AlgorithmConfiguration,
    GeneratorAlgorithm,
    Untargeted,
    get_configuration_class_with_attributes,
)
from ...registry import ApplicationsRegistry
from .implementation import MODEL_TYPES, SCHEDULER_TYPES, Generator

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

T = type(None)
S = TypeVar("S", bound=str)


[docs]class DiffusersGenerationAlgorithm(GeneratorAlgorithm[S, T]):
[docs] def __init__( self, configuration: AlgorithmConfiguration, target: Optional[S] = None ): """Diffusers generation algorithm. Args: configuration: domain and application specification, defining types and validations. target: none for untargeted generation. Example: An example for using a generative algorithm from Diffusers:: configuration = GeneratorConfiguration() algorithm = DiffusersGenerationAlgorithm(configuration=configuration) items = list(algorithm.sample(1)) print(items) """ configuration = self.validate_configuration(configuration) # TODO there might also be a validation/check on the target input super().__init__( configuration=configuration, target=None, # type:ignore )
[docs] def get_generator( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ) -> Untargeted: """Get the function to sample batches. Args: configuration: helps to set up the application. target: context or condition for the generation. Returns: callable generating a batch of items. """ logger.info("ensure artifacts for the application are present.") self.local_artifacts = configuration.ensure_artifacts() implementation: Generator = configuration.get_conditional_generator( # type: ignore self.local_artifacts ) return implementation.sample
[docs] def validate_configuration( self, configuration: AlgorithmConfiguration ) -> AlgorithmConfiguration: assert isinstance(configuration, AlgorithmConfiguration) return configuration
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class DiffusersConfiguration(AlgorithmConfiguration[str, None]): """Basic configuration for a diffusion algorithm.""" algorithm_type: ClassVar[str] = "generation" domain: ClassVar[str] = "vision" modality: str = field( default="image", metadata=dict( description="Modality. Supported: 'image', 'text', 'audio', 'molecule'." ), ) model_type: str = field( default="diffusion", metadata=dict( description=f"Type of the model. Supported: {', '.join(MODEL_TYPES.keys())}" ), ) scheduler_type: str = field( default="discrete", metadata=dict( description=f"Type of the noise scheduler. Supported: {', '.join(SCHEDULER_TYPES.keys())}" ), ) prompt: Union[str, Dict[str, Any]] = field( # type: ignore default=None, metadata=dict(description="Prompt for conditional generation."), )
[docs] def get_conditional_generator(self, resources_path: str, **kwargs) -> Generator: return Generator( resources_path=resources_path, model_type=self.model_type, model_name=self.algorithm_version, scheduler_type=self.scheduler_type, prompt=self.prompt, )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class DDPMGenerator(DiffusersConfiguration): """DDPM - Configuration to generate using unconditional denoising diffusion models.""" algorithm_version: str = "google/ddpm-cifar10-32" model_type: str = "diffusion" scheduler_type: str = "ddpm" modality: str = "image"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class DDIMGenerator(DiffusersConfiguration): """DDIM - Configuration to generate using a denoising diffusion implicit model.""" algorithm_version: str = "dboshardy/ddim-butterflies-128" model_type: str = "diffusion_implicit" scheduler_type: str = "ddim" modality: str = "image"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class LDMGenerator(DiffusersConfiguration): """Unconditional Latent Diffusion Model - Configuration to generate using a latent diffusion model.""" algorithm_version: str = "CompVis/ldm-celebahq-256" model_type: str = "latent_diffusion" scheduler_type: str = "discrete" modality: str = "image"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class ScoreSdeGenerator(DiffusersConfiguration): """Score SDE Generative Model - Configuration to generate using a score-based diffusion generative model.""" algorithm_version: str = "google/ncsnpp-celebahq-256" model_type: str = "score_sde" scheduler_type: str = "continuous" modality: str = "image"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class LDMTextToImageGenerator(DiffusersConfiguration): """Conditional Latent Diffusion Model - Configuration for conditional text2image generation using a latent diffusion model.""" algorithm_version: str = "CompVis/ldm-text2im-large-256" model_type: str = "latent_diffusion_conditional" scheduler_type: str = "discrete" modality: str = "token2image"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class StableDiffusionGenerator(DiffusersConfiguration): """Stable Diffusion Model - Configuration for conditional text2image generation using a stable diffusion model. You have to provide authentication credentials to use this model. """ algorithm_version: str = "CompVis/stable-diffusion-v1-4" model_type: str = "stable_diffusion" scheduler_type: str = "discrete" modality: str = "token2image"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs]@ApplicationsRegistry.register_algorithm_application(DiffusersGenerationAlgorithm) class GeoDiffGenerator(DiffusersConfiguration): """GeoDiff Diffusion Model - Configuration for conditional 3D molecule structure generation given 2D information using a GeoDiff diffusion model.""" algorithm_version: str = "fusing/gfn-molecule-gen-drugs" model_type: str = "geodiff" scheduler_type: str = "ddpm" modality: str = "molecule"
[docs] @classmethod def list_versions(cls) -> Set[str]: """Get possible algorithm versions. Standard S3 and cache search adding the version used in the configuration. Returns: viable values as :attr:`algorithm_version` for the environment. """ logger.warning( "more algorithm versions can be found on https://github.com/huggingface/diffusers" ) return ( get_configuration_class_with_attributes(cls) .list_versions() .union({cls.algorithm_version}) )
[docs] def get_target_description(self) -> Optional[Dict[str, str]]: """Get description of the target for generation. Returns: target description, returns None in case no target is used. """ return { "title": "Prompt 2d representation for the molecule.", "description": "A dictionary containing all the information to build a molecule graph. Supported keys: ['atom_type', 'bond_edge_index', 'edge_index', 'edge_order', 'edge_type', 'idx', 'is_bond', 'num_nodes_per_graph', 'num_pos_ref', 'nx', 'pos', 'pos_ref', 'rdmol', 'smiles']", "type": "dictionary", }