Source code for gt4sd.algorithms.conditional_generation.molgx.core

#
# MIT License
#
# Copyright (c) 2022 GT4SD team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""MolGX Algorithm.

MolGX generation algorithm.
"""

import logging
from dataclasses import field
from typing import Any, ClassVar, Dict, Iterator, Optional, TypeVar

from ....domains.materials import SMILES, MoleculeFormat, validate_molecules
from ....exceptions import InvalidItem
from ...core import AlgorithmConfiguration, GeneratorAlgorithm, Untargeted
from ...registry import ApplicationsRegistry
from .implementation import MolGXGenerator

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

T = type(None)
S = TypeVar("S", bound=SMILES)


[docs]class MolGX(GeneratorAlgorithm[S, T]): """MolGX Algorithm."""
[docs] def __init__( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T] = None, ): """Instantiate MolGX ready to generate items. Args: configuration: domain and application specification defining parameters, types and validations. target: a target for which to generate items. Example: An example for generating small molecules (SMILES) with given HOMO and LUMO energies: configuration = MolGXQM9Generator() molgx = MolGX(configuration=configuration, target=target) items = list(molgx.sample(10)) print(items) """ configuration = self.validate_configuration(configuration) # TODO there might also be a validation/check on the target input super().__init__( configuration=configuration, # type:ignore target=target, # type:ignore )
[docs] def get_generator( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ) -> Untargeted: """Get the function to sample batches via the ConditionalGenerator. Args: configuration: helps to set up the application. target: context or condition for the generation. Unused in the algorithm. Returns: callable generating a batch of items. """ logger.info("ensure artifacts for the application are present.") self.local_artifacts = configuration.ensure_artifacts() implementation: MolGXGenerator = configuration.get_conditional_generator( # type: ignore self.local_artifacts ) return implementation.generate
[docs] def validate_configuration( self, configuration: AlgorithmConfiguration[S, T] ) -> AlgorithmConfiguration[S, T]: # TODO raise InvalidAlgorithmConfiguration assert isinstance(configuration, AlgorithmConfiguration) return configuration
[docs] def sample(self, number_of_items: int = 100) -> Iterator[S]: """Generate a number of unique and valid items. Args: number_of_items: number of items to generate. Defaults to 100. Yields: the items. """ if hasattr(self.configuration, "maximum_number_of_solutions"): maxiumum_number_of_molecules = int( getattr(self.configuration, "maximum_number_of_solutions") ) if number_of_items > maxiumum_number_of_molecules: logger.warning( f"current MolGX configuration can not support generation of {number_of_items} molecules..." ) logger.warning( f"to enable generation of {number_of_items} molecules, increase 'maximum_number_of_solutions' (currently set to {maxiumum_number_of_molecules})" ) number_of_items = maxiumum_number_of_molecules logger.warning(f"generating at most: {maxiumum_number_of_molecules}...") return super().sample(number_of_items=number_of_items)
[docs]@ApplicationsRegistry.register_algorithm_application(MolGX) class MolGXQM9Generator(AlgorithmConfiguration[SMILES, Any]): """Configuration to generate compounds with given HOMO and LUMO energies.""" algorithm_type: ClassVar[str] = "conditional_generation" domain: ClassVar[str] = "materials" algorithm_version: str = "v0" homo_energy_value: float = field( default=-0.25, metadata=dict(description="Target HOMO energy value."), ) lumo_energy_value: float = field( default=0.08, metadata=dict(description="Target LUMO energy value."), ) use_linear_model: bool = field( default=True, metadata=dict(description="Linear model usage."), ) number_of_candidates: int = field( default=2, metadata=dict(description="Number of candidates to consider."), ) maximum_number_of_candidates: int = field( default=5, metadata=dict(description="Maximum number of candidates to consider."), ) maximum_number_of_solutions: int = field( default=10, metadata=dict(description="Maximum number of solutions."), ) maximum_number_of_nodes: int = field( default=50000, metadata=dict(description="Maximum number of nodes in the graph exploration."), ) beam_size: int = field( default=2000, metadata=dict(description="Size of the beam during search."), ) without_estimate: bool = field( default=True, metadata=dict(description="Disable estimates."), ) use_specific_rings: bool = field( default=True, metadata=dict(description="Flag to indicate whether specific rings are used."), ) use_fragment_const: bool = field( default=False, metadata=dict(description="Using constant fragments."), )
[docs] def get_target_description(self) -> Optional[Dict[str, str]]: """Get description of the target for generation. Returns: target description, returns None in case no target is used. """ return None
[docs] def get_conditional_generator(self, resources_path: str) -> MolGXGenerator: """Instantiate the actual generator implementation. Args: resources_path: local path to model files. Returns: instance with :meth:`generate<gt4sd.algorithms.conditional_generation.molgx.implementation.MolGXGenerator.generate>` for generation. """ return MolGXGenerator( resources_path=resources_path, homo_energy_value=self.homo_energy_value, lumo_energy_value=self.lumo_energy_value, use_linear_model=self.use_linear_model, number_of_candidates=self.number_of_candidates, maximum_number_of_candidates=self.maximum_number_of_candidates, maximum_number_of_solutions=self.maximum_number_of_solutions, maximum_number_of_nodes=self.maximum_number_of_nodes, beam_size=self.beam_size, without_estimate=self.without_estimate, use_specific_rings=self.use_specific_rings, use_fragment_const=self.use_fragment_const, tag_name="qm9_sample_pretrained_model.pickle", )
[docs] def validate_item(self, item: str) -> SMILES: """Check that item is a valid SMILES. Args: item: a generated item that is possibly not valid. Raises: InvalidItem: in case the item can not be validated. Returns: the validated SMILES. """ ( molecules, _, ) = validate_molecules([item], MoleculeFormat.smiles) if molecules[0] is None: raise InvalidItem( title="InvalidSMILES", detail=f'rdkit.Chem.MolFromSmiles returned None for "{item}"', ) return SMILES(item)